陜西財(cái)經(jīng)職業(yè)技術(shù)學(xué)院《計(jì)算機(jī)視覺基礎(chǔ)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
陜西財(cái)經(jīng)職業(yè)技術(shù)學(xué)院《計(jì)算機(jī)視覺基礎(chǔ)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
陜西財(cái)經(jīng)職業(yè)技術(shù)學(xué)院《計(jì)算機(jī)視覺基礎(chǔ)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
陜西財(cái)經(jīng)職業(yè)技術(shù)學(xué)院《計(jì)算機(jī)視覺基礎(chǔ)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
陜西財(cái)經(jīng)職業(yè)技術(shù)學(xué)院《計(jì)算機(jī)視覺基礎(chǔ)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密封線第1頁(yè),共3頁(yè)陜西財(cái)經(jīng)職業(yè)技術(shù)學(xué)院

《計(jì)算機(jī)視覺基礎(chǔ)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺中的圖像超分辨率技術(shù)用于提高圖像的分辨率。假設(shè)要將一張低分辨率的圖像恢復(fù)成高分辨率圖像,以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的圖像超分辨率方法能夠生成清晰逼真的高分辨率圖像B.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像超分辨率任務(wù)中無法發(fā)揮作用C.圖像超分辨率的效果不受原始低分辨率圖像的質(zhì)量和內(nèi)容的限制D.結(jié)合先驗(yàn)知識(shí)和深度學(xué)習(xí)的方法可以改善圖像超分辨率的效果2、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別用于分析視頻中的人體動(dòng)作。假設(shè)要識(shí)別一段舞蹈視頻中的動(dòng)作類別。以下關(guān)于動(dòng)作識(shí)別方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以基于時(shí)空特征提取的方法,捕捉動(dòng)作在時(shí)間和空間上的變化B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)適用于動(dòng)作序列的分析C.動(dòng)作識(shí)別只需要關(guān)注人體的關(guān)節(jié)位置,不需要考慮人體的整體形態(tài)D.多模態(tài)數(shù)據(jù)融合,如結(jié)合音頻和視頻信息,可以提高動(dòng)作識(shí)別的準(zhǔn)確率3、在進(jìn)行圖像增強(qiáng)時(shí),我們常常需要在保持圖像細(xì)節(jié)的同時(shí)改善圖像質(zhì)量。假設(shè)一張低光照條件下拍攝的圖像存在大量噪聲,以下哪種圖像增強(qiáng)方法可能不太適合處理這種情況?()A.直方圖均衡化B.基于小波變換的去噪方法C.中值濾波D.高斯濾波4、計(jì)算機(jī)視覺在安防領(lǐng)域的應(yīng)用可以加強(qiáng)監(jiān)控和預(yù)警能力。假設(shè)要通過攝像頭實(shí)時(shí)監(jiān)測(cè)公共場(chǎng)所的異常行為,以下關(guān)于安防計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.簡(jiǎn)單的運(yùn)動(dòng)檢測(cè)算法就能準(zhǔn)確識(shí)別各種異常行為B.不考慮人群密度和環(huán)境背景對(duì)異常行為檢測(cè)的影響C.結(jié)合深度學(xué)習(xí)和行為分析模型可以提高異常行為檢測(cè)的準(zhǔn)確性和及時(shí)性D.安防領(lǐng)域的計(jì)算機(jī)視覺系統(tǒng)不需要考慮隱私保護(hù)和數(shù)據(jù)安全問題5、計(jì)算機(jī)視覺中的深度估計(jì)是確定場(chǎng)景中物體距離相機(jī)的遠(yuǎn)近。假設(shè)要為機(jī)器人導(dǎo)航提供深度信息,以下關(guān)于深度估計(jì)方法的精度要求,哪一項(xiàng)是最為關(guān)鍵的?()A.能夠區(qū)分不同物體的大致距離范圍即可B.提供精確到毫米級(jí)別的深度信息,確保機(jī)器人安全導(dǎo)航C.深度估計(jì)的精度對(duì)機(jī)器人導(dǎo)航影響不大,可以忽略D.精度要求取決于機(jī)器人的運(yùn)動(dòng)速度,速度越快要求精度越低6、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,根據(jù)用戶的需求從圖像數(shù)據(jù)庫(kù)中查找相關(guān)圖像。假設(shè)要從一個(gè)大型的圖像庫(kù)中檢索包含特定物體的圖像,以下關(guān)于圖像檢索方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像的內(nèi)容特征,如顏色、形狀和紋理等,進(jìn)行相似性度量和檢索B.深度學(xué)習(xí)模型能夠提取更具語(yǔ)義和判別力的特征,提高圖像檢索的準(zhǔn)確性C.圖像檢索的結(jié)果只取決于圖像的特征表示,與檢索算法的效率無關(guān)D.可以結(jié)合用戶的反饋和交互,不斷優(yōu)化圖像檢索的結(jié)果7、計(jì)算機(jī)視覺中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)要對(duì)一段視頻中的物體運(yùn)動(dòng)進(jìn)行分析,以下關(guān)于光流估計(jì)的描述,正確的是:()A.稀疏光流估計(jì)只計(jì)算圖像中部分特征點(diǎn)的運(yùn)動(dòng),無法反映整體的運(yùn)動(dòng)趨勢(shì)B.稠密光流估計(jì)能夠得到圖像中每個(gè)像素的運(yùn)動(dòng)向量,但計(jì)算復(fù)雜度較高C.光流估計(jì)的結(jié)果不受光照變化和噪聲的影響,具有很高的準(zhǔn)確性D.光流估計(jì)只能用于分析勻速直線運(yùn)動(dòng)的物體,對(duì)于復(fù)雜的運(yùn)動(dòng)模式無法處理8、計(jì)算機(jī)視覺中的場(chǎng)景理解是對(duì)整個(gè)圖像場(chǎng)景的語(yǔ)義和結(jié)構(gòu)進(jìn)行分析和理解。以下關(guān)于場(chǎng)景理解的描述,不準(zhǔn)確的是()A.場(chǎng)景理解需要綜合考慮物體、空間關(guān)系、上下文信息等多個(gè)方面B.可以通過構(gòu)建場(chǎng)景圖來表示場(chǎng)景中的實(shí)體和關(guān)系,輔助場(chǎng)景理解C.場(chǎng)景理解在智能導(dǎo)航、虛擬環(huán)境構(gòu)建和圖像編輯等領(lǐng)域具有潛在的應(yīng)用價(jià)值D.場(chǎng)景理解是一個(gè)已經(jīng)完全解決的問題,不存在任何技術(shù)難題9、計(jì)算機(jī)視覺中的車牌識(shí)別是智能交通系統(tǒng)中的重要組成部分。假設(shè)要在一個(gè)高速公路收費(fèi)站實(shí)現(xiàn)準(zhǔn)確的車牌識(shí)別,以下關(guān)于車牌識(shí)別方法的描述,正確的是:()A.基于邊緣檢測(cè)和字符分割的方法對(duì)車牌的變形和污漬具有很強(qiáng)的適應(yīng)性B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠直接從車牌圖像中識(shí)別出字符,但對(duì)車牌的傾斜和光照不均敏感C.車牌識(shí)別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無法正常運(yùn)行D.車牌識(shí)別的準(zhǔn)確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無關(guān)10、在計(jì)算機(jī)視覺的視覺跟蹤與定位任務(wù)中,實(shí)時(shí)跟蹤物體并確定其在空間中的位置。假設(shè)要在一個(gè)室內(nèi)環(huán)境中跟蹤一個(gè)移動(dòng)的機(jī)器人并確定其位置,以下關(guān)于視覺跟蹤與定位方法的描述,正確的是:()A.基于標(biāo)志物的跟蹤與定位方法在標(biāo)志物被遮擋時(shí)仍能準(zhǔn)確工作B.視覺里程計(jì)方法能夠獨(dú)立實(shí)現(xiàn)高精度的長(zhǎng)期跟蹤與定位C.同時(shí)使用多個(gè)相機(jī)進(jìn)行觀測(cè)不能提高跟蹤與定位的性能D.環(huán)境的光照變化和動(dòng)態(tài)障礙物對(duì)視覺跟蹤與定位的結(jié)果影響較小11、計(jì)算機(jī)視覺中的圖像增強(qiáng)旨在改善圖像的質(zhì)量和視覺效果。假設(shè)一張低對(duì)比度、有噪聲的醫(yī)學(xué)圖像需要進(jìn)行增強(qiáng)處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強(qiáng)技術(shù)最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波12、當(dāng)處理低光照條件下拍攝的圖像時(shí),為了增強(qiáng)圖像的亮度和對(duì)比度,同時(shí)減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡(jiǎn)單地增加圖像的整體亮度值D.不進(jìn)行任何處理,保留低光照效果13、視頻分析是計(jì)算機(jī)視覺的一個(gè)重要領(lǐng)域。假設(shè)要對(duì)一段監(jiān)控視頻中的行為進(jìn)行分析和理解,以下關(guān)于視頻分析方法的描述,正確的是:()A.直接將視頻中的每一幀圖像作為獨(dú)立的圖像進(jìn)行處理,就能準(zhǔn)確分析視頻中的行為B.考慮視頻的時(shí)序信息和幀間的相關(guān)性對(duì)于理解復(fù)雜的行為非常重要C.視頻分析只適用于簡(jiǎn)單的動(dòng)作識(shí)別,對(duì)于復(fù)雜的多人物交互行為無法處理D.視頻的分辨率和幀率對(duì)視頻分析的結(jié)果沒有影響14、計(jì)算機(jī)視覺中的行人檢測(cè)是智能監(jiān)控系統(tǒng)中的重要任務(wù)。假設(shè)要在一個(gè)擁擠的公共場(chǎng)所中準(zhǔn)確檢測(cè)出行人,同時(shí)要排除其他類似物體的干擾。以下哪種行人檢測(cè)方法在這種復(fù)雜環(huán)境下具有更高的檢測(cè)率和較低的誤檢率?()A.基于HOG特征的行人檢測(cè)B.基于深度學(xué)習(xí)的行人檢測(cè)C.基于運(yùn)動(dòng)信息的行人檢測(cè)D.基于形狀模板的行人檢測(cè)15、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,目標(biāo)可能會(huì)被遮擋、變形或快速移動(dòng)。假設(shè)要跟蹤一個(gè)在人群中快速移動(dòng)的人物,以下哪種跟蹤算法可能更適合應(yīng)對(duì)這種復(fù)雜情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于均值漂移的跟蹤算法D.基于模板匹配的跟蹤算法16、在計(jì)算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的病變區(qū)域精確地分割出來,以便醫(yī)生進(jìn)行診斷和治療。這張醫(yī)學(xué)圖像可能存在噪聲、模糊和不均勻的灰度分布。以下哪種圖像分割方法在處理這種復(fù)雜情況時(shí)可能更具優(yōu)勢(shì)?()A.基于閾值的分割方法,根據(jù)像素值設(shè)定閾值進(jìn)行分割B.基于區(qū)域生長(zhǎng)的分割方法,從種子點(diǎn)開始逐漸擴(kuò)展區(qū)域C.基于深度學(xué)習(xí)的語(yǔ)義分割算法,如U-NetD.隨機(jī)分割圖像,然后根據(jù)后續(xù)分析進(jìn)行調(diào)整17、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對(duì)于準(zhǔn)確理解場(chǎng)景是至關(guān)重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機(jī)選擇圖像中的部分區(qū)域進(jìn)行分析18、計(jì)算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,恢復(fù)清晰的圖像。假設(shè)要處理一張受到嚴(yán)重噪聲污染的天文圖像,以下關(guān)于去噪算法的選擇,哪一項(xiàng)是需要謹(jǐn)慎考慮的?()A.選擇基于濾波的去噪算法,如中值濾波B.采用基于深度學(xué)習(xí)的去噪算法,如自編碼器C.只考慮去噪效果,不關(guān)心圖像細(xì)節(jié)的保留D.根據(jù)噪聲的類型和強(qiáng)度選擇合適的去噪算法19、當(dāng)進(jìn)行圖像的顯著性檢測(cè)時(shí),假設(shè)要從一張復(fù)雜的圖像中突出顯示出人們視覺上最關(guān)注的區(qū)域,例如在一張風(fēng)景圖像中突出顯示出一座顯眼的山峰。以下哪種方法在計(jì)算圖像的顯著性時(shí)可能更準(zhǔn)確?()A.基于頻率域分析的方法,計(jì)算圖像的頻譜特征B.基于對(duì)比度的方法,比較區(qū)域與周圍的差異C.隨機(jī)選擇圖像中的部分區(qū)域作為顯著性區(qū)域D.不進(jìn)行任何計(jì)算,主觀判斷顯著性區(qū)域20、在計(jì)算機(jī)視覺中,圖像分類是一項(xiàng)基礎(chǔ)任務(wù)。假設(shè)我們有一組包含各種動(dòng)物的圖像數(shù)據(jù)集,需要訓(xùn)練一個(gè)模型來準(zhǔn)確區(qū)分不同的動(dòng)物類別。在選擇圖像分類模型時(shí),以下哪種模型架構(gòu)通常在處理大規(guī)模圖像數(shù)據(jù)集時(shí)表現(xiàn)出色?()A.傳統(tǒng)的機(jī)器學(xué)習(xí)算法,如支持向量機(jī)(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.深度卷積神經(jīng)網(wǎng)絡(luò),如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺在智能安防中的應(yīng)用場(chǎng)景。2、(本題5分)計(jì)算機(jī)視覺中如何輔助新聞編輯和內(nèi)容篩選?3、(本題5分)簡(jiǎn)述圖像復(fù)原的方法。4、(本題5分)計(jì)算機(jī)視覺中如何進(jìn)行圖像預(yù)處理?5、(本題5分)說明計(jì)算機(jī)視覺在藝術(shù)創(chuàng)作和設(shè)計(jì)中的應(yīng)用。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)研究某運(yùn)動(dòng)品牌的兒童運(yùn)動(dòng)裝備廣告設(shè)計(jì),分析其可愛的設(shè)計(jì)、安全性能展示、運(yùn)動(dòng)樂趣傳達(dá)如何吸引家長(zhǎng)為孩子購(gòu)買。2、(本題5分)一家書店的主題活動(dòng)海報(bào)設(shè)計(jì)營(yíng)造濃厚閱讀氛圍。請(qǐng)研究海報(bào)在主題突出、活動(dòng)內(nèi)容呈現(xiàn)、嘉賓介紹上的設(shè)計(jì)方法,以及如何吸引讀者參與活動(dòng)。3、(本題5分)以一款汽車品牌的宣傳冊(cè)設(shè)計(jì)為例,分析其如何運(yùn)用視覺元素展示汽車性能和品牌形象。4、(本題5分)觀察某旅游景區(qū)的電子

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論