首都體育學(xué)院《大數(shù)據(jù)技術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
首都體育學(xué)院《大數(shù)據(jù)技術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
首都體育學(xué)院《大數(shù)據(jù)技術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
首都體育學(xué)院《大數(shù)據(jù)技術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
首都體育學(xué)院《大數(shù)據(jù)技術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁首都體育學(xué)院

《大數(shù)據(jù)技術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在大數(shù)據(jù)的流處理中,窗口操作是常見的處理方式。假設(shè)我們需要對數(shù)據(jù)流進(jìn)行按時(shí)間窗口的統(tǒng)計(jì)分析,以下哪種窗口類型不適合用于實(shí)時(shí)性要求較高的場景?()A.滾動(dòng)窗口B.滑動(dòng)窗口C.會話窗口D.固定窗口2、大數(shù)據(jù)在金融風(fēng)險(xiǎn)管理中的應(yīng)用包括信用風(fēng)險(xiǎn)評估、市場風(fēng)險(xiǎn)預(yù)測、操作風(fēng)險(xiǎn)監(jiān)測等,以下關(guān)于大數(shù)據(jù)在金融風(fēng)險(xiǎn)管理中應(yīng)用的描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)可以用于信用風(fēng)險(xiǎn)評估,提高金融機(jī)構(gòu)的風(fēng)險(xiǎn)管理能力B.大數(shù)據(jù)可以用于市場風(fēng)險(xiǎn)預(yù)測,提高金融機(jī)構(gòu)的盈利能力C.大數(shù)據(jù)可以用于操作風(fēng)險(xiǎn)監(jiān)測,加強(qiáng)金融機(jī)構(gòu)的內(nèi)部控制D.大數(shù)據(jù)在金融風(fēng)險(xiǎn)管理中的應(yīng)用只局限于傳統(tǒng)金融機(jī)構(gòu),不能應(yīng)用于互聯(lián)網(wǎng)金融3、大數(shù)據(jù)分析中的異常檢測是一項(xiàng)重要任務(wù)。假設(shè)要從一個(gè)網(wǎng)絡(luò)流量數(shù)據(jù)集中檢測出異常的流量模式。以下哪種方法最常用于網(wǎng)絡(luò)流量的異常檢測?()A.基于統(tǒng)計(jì)的方法B.基于機(jī)器學(xué)習(xí)的方法C.基于規(guī)則的方法D.以上方法結(jié)合使用4、在大數(shù)據(jù)的背景下,數(shù)據(jù)治理變得越來越重要。假設(shè)一個(gè)組織擁有多個(gè)部門,每個(gè)部門都有自己的數(shù)據(jù)管理方式和標(biāo)準(zhǔn)。以下哪種數(shù)據(jù)治理策略最能促進(jìn)數(shù)據(jù)的共享和一致性?()A.建立統(tǒng)一的數(shù)據(jù)治理框架和標(biāo)準(zhǔn)B.讓各部門自行管理數(shù)據(jù),互不干擾C.只關(guān)注核心業(yè)務(wù)數(shù)據(jù)的治理D.定期清理不需要的數(shù)據(jù)5、對于一個(gè)需要實(shí)時(shí)處理和分析大量流數(shù)據(jù)的應(yīng)用場景,例如實(shí)時(shí)監(jiān)控交通流量,以下哪種技術(shù)架構(gòu)最適合?()A.Hadoop生態(tài)系統(tǒng)B.Spark流處理框架C.傳統(tǒng)的數(shù)據(jù)倉庫D.關(guān)系型數(shù)據(jù)庫6、在大數(shù)據(jù)處理中,常常需要對數(shù)據(jù)進(jìn)行分區(qū)。假設(shè)有一個(gè)大規(guī)模的數(shù)據(jù)集,需要按照某個(gè)字段的值進(jìn)行分區(qū)存儲,以便提高查詢效率。以下哪種分區(qū)方式在處理這種數(shù)據(jù)時(shí)可能效果較好?()A.哈希分區(qū)B.范圍分區(qū)C.列表分區(qū)D.Alloftheabove(以上皆是)7、在大數(shù)據(jù)處理框架中,Hadoop和Spark都有廣泛的應(yīng)用。假設(shè)一個(gè)企業(yè)需要處理大量的歷史數(shù)據(jù),并進(jìn)行復(fù)雜的數(shù)據(jù)分析和機(jī)器學(xué)習(xí)任務(wù)。以下關(guān)于Hadoop和Spark的特點(diǎn)和適用場景,哪一項(xiàng)是錯(cuò)誤的?()A.Hadoop適合處理大規(guī)模的靜態(tài)數(shù)據(jù),批處理任務(wù)B.Spark適合處理實(shí)時(shí)流數(shù)據(jù),迭代計(jì)算和交互式查詢C.Hadoop的計(jì)算速度通常比Spark快,尤其對于小數(shù)據(jù)量的計(jì)算D.Spark可以在內(nèi)存中進(jìn)行計(jì)算,提高了數(shù)據(jù)處理的效率8、在大數(shù)據(jù)的隱私保護(hù)方面,數(shù)據(jù)匿名化是一種常用的技術(shù)。假設(shè)我們有一個(gè)包含個(gè)人敏感信息的數(shù)據(jù)集,需要在發(fā)布數(shù)據(jù)前進(jìn)行匿名化處理。以下關(guān)于數(shù)據(jù)匿名化的說法,哪一項(xiàng)是錯(cuò)誤的?()A.數(shù)據(jù)匿名化可以完全消除數(shù)據(jù)泄露的風(fēng)險(xiǎn)B.匿名化后的數(shù)據(jù)仍然可能通過鏈接攻擊等方式被重新識別C.在進(jìn)行匿名化處理時(shí),需要平衡數(shù)據(jù)的可用性和隱私保護(hù)程度D.不同的匿名化方法對數(shù)據(jù)的保護(hù)程度和可用性影響不同9、大數(shù)據(jù)在教育領(lǐng)域的應(yīng)用越來越廣泛。以下關(guān)于大數(shù)據(jù)在教育中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以通過分析學(xué)生的學(xué)習(xí)行為和成績數(shù)據(jù)進(jìn)行個(gè)性化教學(xué)B.有助于學(xué)校優(yōu)化課程設(shè)置和教學(xué)資源分配C.大數(shù)據(jù)在教育中的應(yīng)用可能會侵犯學(xué)生的隱私D.由于教育數(shù)據(jù)的保密性要求高,大數(shù)據(jù)在教育中的應(yīng)用受到很大限制10、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)隱私保護(hù)的法律法規(guī)日益嚴(yán)格。如果企業(yè)在處理用戶數(shù)據(jù)時(shí)違反了相關(guān)法規(guī),可能會面臨以下哪種后果?()A.罰款B.刑事責(zé)任C.聲譽(yù)受損D.以上都是11、在大數(shù)據(jù)存儲中,為了提高數(shù)據(jù)的可靠性和容錯(cuò)性,常常采用冗余存儲。假設(shè)有一個(gè)數(shù)據(jù)塊,系統(tǒng)設(shè)置了多個(gè)副本,當(dāng)其中一個(gè)副本損壞時(shí),以下哪種恢復(fù)方式最快速?()A.從其他副本中直接復(fù)制B.重新計(jì)算損壞的數(shù)據(jù)C.等待副本自動(dòng)修復(fù)D.以上方式恢復(fù)速度相同12、大數(shù)據(jù)的分析常常需要處理高維度的數(shù)據(jù)。假設(shè)一個(gè)數(shù)據(jù)集包含了數(shù)百個(gè)特征,這給分析帶來了很大的挑戰(zhàn)。以下哪種方法最能有效地降低數(shù)據(jù)的維度,同時(shí)保留重要的信息?()A.特征選擇B.特征提取C.主成分分析D.以上方法都可以13、大數(shù)據(jù)中的數(shù)據(jù)血緣追蹤可以幫助理解數(shù)據(jù)的來龍去脈。以下關(guān)于數(shù)據(jù)血緣追蹤工具和技術(shù),哪項(xiàng)說法不準(zhǔn)確?()A.一些商業(yè)的大數(shù)據(jù)管理平臺提供了內(nèi)置的數(shù)據(jù)血緣追蹤功能B.可以通過自定義腳本和數(shù)據(jù)庫元數(shù)據(jù)來實(shí)現(xiàn)數(shù)據(jù)血緣的追蹤C(jī).數(shù)據(jù)血緣追蹤技術(shù)能夠自動(dòng)發(fā)現(xiàn)和記錄數(shù)據(jù)處理過程中的所有變化D.數(shù)據(jù)血緣追蹤只適用于關(guān)系型數(shù)據(jù)庫,對非關(guān)系型數(shù)據(jù)庫不適用14、在大數(shù)據(jù)處理中,數(shù)據(jù)傾斜是一個(gè)常見的問題。以下關(guān)于數(shù)據(jù)傾斜的描述,錯(cuò)誤的是()A.數(shù)據(jù)傾斜會導(dǎo)致某些任務(wù)的處理時(shí)間過長B.通常是由于數(shù)據(jù)分布不均勻引起的C.可以通過增加節(jié)點(diǎn)數(shù)量來解決數(shù)據(jù)傾斜問題D.對數(shù)據(jù)進(jìn)行預(yù)處理和優(yōu)化算法可以緩解數(shù)據(jù)傾斜15、對于一個(gè)需要處理大量實(shí)時(shí)交易數(shù)據(jù)的電商大數(shù)據(jù)系統(tǒng),以下哪種技術(shù)能夠確保數(shù)據(jù)的一致性和事務(wù)的完整性?()A.分布式事務(wù)B.兩階段提交C.最終一致性D.以上都不是16、大數(shù)據(jù)分析方法包括描述性分析、診斷性分析、預(yù)測性分析和規(guī)范性分析等。以下對這些分析方法的描述,不正確的是()A.描述性分析主要是對數(shù)據(jù)進(jìn)行概括和總結(jié),提供數(shù)據(jù)的基本特征B.診斷性分析用于找出導(dǎo)致問題發(fā)生的原因C.預(yù)測性分析基于歷史數(shù)據(jù)預(yù)測未來的趨勢和結(jié)果D.規(guī)范性分析能夠直接給出解決問題的具體方案,無需人工干預(yù)17、在大數(shù)據(jù)處理中,數(shù)據(jù)分析的結(jié)果需要進(jìn)行解釋和應(yīng)用,以下關(guān)于數(shù)據(jù)分析結(jié)果解釋和應(yīng)用的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)分析結(jié)果的解釋需要結(jié)合具體的業(yè)務(wù)背景和數(shù)據(jù)特點(diǎn)進(jìn)行B.數(shù)據(jù)分析結(jié)果的應(yīng)用需要根據(jù)實(shí)際情況進(jìn)行決策和行動(dòng)C.數(shù)據(jù)分析結(jié)果的解釋和應(yīng)用只需要數(shù)據(jù)分析師進(jìn)行,不需要其他人員參與D.數(shù)據(jù)分析結(jié)果的解釋和應(yīng)用需要不斷地進(jìn)行評估和調(diào)整18、在大數(shù)據(jù)項(xiàng)目中,數(shù)據(jù)質(zhì)量評估至關(guān)重要。假設(shè)我們有一個(gè)電商網(wǎng)站的用戶行為數(shù)據(jù)集,包含瀏覽記錄、購買記錄等。以下哪項(xiàng)不是數(shù)據(jù)質(zhì)量評估的關(guān)鍵指標(biāo)?()A.數(shù)據(jù)的準(zhǔn)確性,即數(shù)據(jù)是否真實(shí)反映用戶行為B.數(shù)據(jù)的一致性,不同來源的數(shù)據(jù)是否相互匹配C.數(shù)據(jù)的時(shí)效性,數(shù)據(jù)產(chǎn)生和收集的時(shí)間間隔D.數(shù)據(jù)的美觀性,數(shù)據(jù)在展示時(shí)的視覺效果19、大數(shù)據(jù)的處理需要考慮數(shù)據(jù)的分布和并行性。假設(shè)一個(gè)計(jì)算任務(wù)可以被分解為多個(gè)子任務(wù),并在多個(gè)節(jié)點(diǎn)上并行執(zhí)行。以下哪種數(shù)據(jù)分布方式最能提高并行計(jì)算的效率?()A.隨機(jī)分布B.哈希分布C.范圍分布D.復(fù)制分布20、在利用大數(shù)據(jù)進(jìn)行客戶細(xì)分時(shí),以下哪種方法可以自動(dòng)確定細(xì)分的類別數(shù)量?()A.K-Means聚類B.層次聚類C.密度聚類D.以上都不行21、在構(gòu)建大數(shù)據(jù)處理系統(tǒng)時(shí),需要考慮數(shù)據(jù)的采集、存儲、處理和分析等多個(gè)環(huán)節(jié)。假設(shè)一個(gè)企業(yè)需要從多個(gè)來源(如網(wǎng)站、移動(dòng)應(yīng)用、傳感器等)收集數(shù)據(jù),并將其整合到一個(gè)統(tǒng)一的數(shù)據(jù)倉庫中。以下哪種工具或技術(shù)通常用于數(shù)據(jù)的采集和整合?()A.FlumeB.KafkaC.SqoopD.Alloftheabove(以上皆是)22、假設(shè)要對一個(gè)大型社交網(wǎng)絡(luò)中的用戶關(guān)系進(jìn)行分析,以發(fā)現(xiàn)社區(qū)結(jié)構(gòu),以下哪種算法或技術(shù)最為適用?()A.社交網(wǎng)絡(luò)分析算法B.分類算法C.聚類算法D.關(guān)聯(lián)規(guī)則挖掘算法23、在大數(shù)據(jù)處理中,數(shù)據(jù)壓縮技術(shù)能夠節(jié)省存儲空間和提高傳輸效率。以下關(guān)于數(shù)據(jù)壓縮技術(shù)的說法,錯(cuò)誤的是()A.無損壓縮能夠完全還原原始數(shù)據(jù),沒有任何信息損失B.有損壓縮會丟失部分?jǐn)?shù)據(jù),但在某些情況下仍能滿足需求C.數(shù)據(jù)壓縮比越高,壓縮效果越好,對數(shù)據(jù)的使用沒有任何影響D.選擇數(shù)據(jù)壓縮技術(shù)時(shí)需要考慮數(shù)據(jù)的特點(diǎn)和應(yīng)用需求24、大數(shù)據(jù)存儲系統(tǒng)通常需要具備可擴(kuò)展性、高性能和高可靠性等特點(diǎn)。以下哪種存儲技術(shù)在處理大規(guī)模數(shù)據(jù)時(shí)具有較好的可擴(kuò)展性?()A.關(guān)系型數(shù)據(jù)庫,如MySQLB.分布式文件系統(tǒng),如HDFSC.傳統(tǒng)的集中式存儲架構(gòu)D.本地磁盤存儲25、大數(shù)據(jù)存儲架構(gòu)有很多種,以下關(guān)于大數(shù)據(jù)存儲架構(gòu)的描述中,錯(cuò)誤的是()。A.分布式存儲架構(gòu)可以提高數(shù)據(jù)的存儲容量和可靠性B.云存儲架構(gòu)可以提供靈活的存儲服務(wù)和高可用性C.集中式存儲架構(gòu)適用于大規(guī)模數(shù)據(jù)的存儲和管理D.大數(shù)據(jù)存儲架構(gòu)只需要考慮存儲容量,不需要考慮存儲性能和成本26、當(dāng)處理大數(shù)據(jù)中的文本數(shù)據(jù)時(shí),自然語言處理技術(shù)經(jīng)常被應(yīng)用。假設(shè)要從大量的新聞文章中提取關(guān)鍵信息和主題。以下哪種自然語言處理技術(shù)最適合這個(gè)任務(wù)?()A.詞法分析B.句法分析C.語義理解D.文本分類27、在大數(shù)據(jù)環(huán)境中,為了實(shí)現(xiàn)數(shù)據(jù)的高效存儲和檢索,以下哪種數(shù)據(jù)結(jié)構(gòu)經(jīng)常被用于索引?()A.B+樹B.紅黑樹C.AVL樹D.跳表28、對于大規(guī)模的圖像數(shù)據(jù),在進(jìn)行大數(shù)據(jù)處理時(shí),以下哪種技術(shù)可以用于提取圖像的特征?()A.卷積神經(jīng)網(wǎng)絡(luò)B.決策樹C.關(guān)聯(lián)規(guī)則挖掘D.聚類分析29、在大數(shù)據(jù)環(huán)境中,數(shù)據(jù)治理是一項(xiàng)重要的工作。以下關(guān)于數(shù)據(jù)治理的目標(biāo),哪一項(xiàng)是不準(zhǔn)確的?()A.確保數(shù)據(jù)的準(zhǔn)確性和完整性B.提高數(shù)據(jù)的安全性和隱私保護(hù)水平C.降低數(shù)據(jù)存儲和處理的成本D.限制數(shù)據(jù)的訪問和使用,以防止數(shù)據(jù)泄露30、在大數(shù)據(jù)處理中,數(shù)據(jù)壓縮是一種常用的技術(shù),以下關(guān)于數(shù)據(jù)壓縮的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)壓縮可以減少數(shù)據(jù)的存儲空間和傳輸帶寬B.數(shù)據(jù)壓縮可以提高數(shù)據(jù)的存儲和傳輸效率C.數(shù)據(jù)壓縮只適用于文本數(shù)據(jù),不適用于圖像、音頻和視頻等多媒體數(shù)據(jù)D.數(shù)據(jù)壓縮需要根據(jù)數(shù)據(jù)的特點(diǎn)和應(yīng)用場景選擇合適的壓縮算法二、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)使用Hive對一個(gè)大規(guī)模的用戶搜索關(guān)鍵詞數(shù)據(jù)集進(jìn)行語義分析,找出相關(guān)的搜索意圖和需求。2、(本題5分)使用SparkSQL,對一個(gè)包含用戶搜索關(guān)鍵詞和點(diǎn)擊行為的數(shù)據(jù)集進(jìn)行搜索效果評估,優(yōu)化搜索算法。3、(本題5分)有一個(gè)包含物流車輛行駛軌跡數(shù)據(jù)的文件,使用Python中的數(shù)據(jù)處理庫,優(yōu)化車輛調(diào)度和路線規(guī)劃。4、(本題5分)有一個(gè)包含交通流量監(jiān)測攝像頭數(shù)據(jù)的文件,使用SQL語句和相關(guān)數(shù)據(jù)庫操作,找出車流量最大的路口和對應(yīng)的車流量。5、(本題5分)用Python結(jié)合HBase數(shù)據(jù)庫,實(shí)現(xiàn)一個(gè)程序來存儲和查詢大量的物流運(yùn)輸數(shù)據(jù),包括運(yùn)輸單號、起始地、目的地、運(yùn)輸時(shí)間等,并能夠根據(jù)運(yùn)輸時(shí)間進(jìn)行范圍查詢。三、簡答題(本大題共5個(gè)小題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論