四川傳媒學(xué)院《P與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
四川傳媒學(xué)院《P與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
四川傳媒學(xué)院《P與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁四川傳媒學(xué)院《P與標(biāo)志設(shè)計》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的車牌識別任務(wù)中,需要從車輛圖像中準(zhǔn)確提取車牌號碼。假設(shè)車牌存在傾斜、變形和光照不均等問題。以下哪種車牌識別方法在應(yīng)對這些挑戰(zhàn)時表現(xiàn)更為出色?()A.基于字符分割的車牌識別B.基于模板匹配的車牌識別C.基于深度學(xué)習(xí)的車牌識別D.基于特征提取的車牌識別2、計算機視覺在自動駕駛領(lǐng)域發(fā)揮著重要作用。假設(shè)一輛自動駕駛汽車正在道路上行駛,需要識別各種交通標(biāo)志、車輛和行人。以下關(guān)于自動駕駛中計算機視覺的描述,哪一項是不正確的?()A.計算機視覺可以通過攝像頭實時獲取道路信息,為車輛的決策和控制提供依據(jù)B.它能夠準(zhǔn)確識別不同光照和天氣條件下的交通對象,不受任何干擾C.深度學(xué)習(xí)算法在自動駕駛的計算機視覺中被廣泛應(yīng)用,用于目標(biāo)檢測和語義分割D.計算機視覺需要與其他傳感器(如雷達、激光雷達)的數(shù)據(jù)融合,以提高感知的可靠性3、在計算機視覺的姿態(tài)估計任務(wù)中,需要確定物體在三維空間中的方向和位置。假設(shè)要估計一個機器人手臂的姿態(tài),以實現(xiàn)精確的控制和操作。以下哪種姿態(tài)估計方法在處理這種機械結(jié)構(gòu)時準(zhǔn)確性更高?()A.基于模型的姿態(tài)估計B.基于深度學(xué)習(xí)的姿態(tài)估計C.基于視覺慣性里程計的姿態(tài)估計D.基于幾何約束的姿態(tài)估計4、計算機視覺中的圖像超分辨率技術(shù)用于提高圖像的分辨率。假設(shè)要將一張低分辨率的圖像恢復(fù)成高分辨率圖像,以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的圖像超分辨率方法能夠生成清晰逼真的高分辨率圖像B.深度學(xué)習(xí)中的生成對抗網(wǎng)絡(luò)(GAN)在圖像超分辨率任務(wù)中無法發(fā)揮作用C.圖像超分辨率的效果不受原始低分辨率圖像的質(zhì)量和內(nèi)容的限制D.結(jié)合先驗知識和深度學(xué)習(xí)的方法可以改善圖像超分辨率的效果5、計算機視覺中的圖像增強技術(shù)可以改善圖像質(zhì)量。假設(shè)要對一張低光照條件下拍攝的圖像進行增強,以下關(guān)于圖像增強方法的描述,正確的是:()A.簡單地增加圖像的亮度就能有效改善低光照圖像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強圖像對比度C.基于深度學(xué)習(xí)的圖像增強方法能夠自適應(yīng)地學(xué)習(xí)到適合的增強策略D.圖像增強不會改變圖像的原始信息和內(nèi)容6、在計算機視覺的人物姿態(tài)估計任務(wù)中,需要確定圖像中人物的關(guān)節(jié)位置和姿態(tài)。假設(shè)要開發(fā)一個用于健身應(yīng)用的姿態(tài)估計系統(tǒng),以下關(guān)于模型訓(xùn)練數(shù)據(jù)的獲取,哪一項是比較困難的?()A.從公開的數(shù)據(jù)集獲取大量的人物姿態(tài)圖像B.自己拍攝不同人群在各種健身動作下的圖像C.利用合成數(shù)據(jù)生成多樣化的人物姿態(tài)樣本D.從社交媒體上收集用戶分享的健身照片7、在圖像分類任務(wù)中,深度學(xué)習(xí)模型取得了顯著的成果。假設(shè)要對一組包含不同動物的圖像進行分類,以下關(guān)于圖像分類模型的描述,正確的是:()A.模型的層數(shù)越多,分類準(zhǔn)確率一定越高B.數(shù)據(jù)增強技術(shù),如旋轉(zhuǎn)、裁剪等,對模型的性能提升沒有幫助C.結(jié)合多種特征提取方法和分類器,可以提高圖像分類的準(zhǔn)確性和魯棒性D.圖像分類模型不需要考慮圖像的空間信息,只關(guān)注像素值的統(tǒng)計特征8、在計算機視覺的應(yīng)用于工業(yè)檢測中,需要檢測產(chǎn)品表面的缺陷和瑕疵。假設(shè)我們要檢測手機屏幕上的劃痕和亮點,以下哪種方法能夠?qū)崿F(xiàn)快速、準(zhǔn)確的缺陷檢測,并且適應(yīng)不同的產(chǎn)品批次和生產(chǎn)環(huán)境?()A.基于機器視覺的傳統(tǒng)檢測方法,結(jié)合閾值和形態(tài)學(xué)操作B.基于深度學(xué)習(xí)的目標(biāo)檢測算法,針對缺陷進行訓(xùn)練C.基于紋理分析和模式識別的方法D.基于光學(xué)原理和物理模型的檢測方法9、在計算機視覺的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對模型的訓(xùn)練和性能評估至關(guān)重要。以下關(guān)于數(shù)據(jù)集的描述,不準(zhǔn)確的是()A.大規(guī)模、多樣化和標(biāo)注準(zhǔn)確的數(shù)據(jù)集有助于訓(xùn)練出泛化能力強的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計算機視覺研究提供了重要的基準(zhǔn)C.數(shù)據(jù)集的構(gòu)建需要耗費大量的時間和人力,但可以通過數(shù)據(jù)增強技術(shù)來減少對原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構(gòu)建完成,就不需要再進行更新和擴展,能夠一直滿足研究的需求10、計算機視覺中的動作識別用于分析視頻中的人體動作。假設(shè)要識別一段舞蹈視頻中的動作類別。以下關(guān)于動作識別方法的描述,哪一項是不準(zhǔn)確的?()A.可以基于時空特征提取的方法,捕捉動作在時間和空間上的變化B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長短時記憶網(wǎng)絡(luò)(LSTM)適用于動作序列的分析C.動作識別只需要關(guān)注人體的關(guān)節(jié)位置,不需要考慮人體的整體形態(tài)D.多模態(tài)數(shù)據(jù)融合,如結(jié)合音頻和視頻信息,可以提高動作識別的準(zhǔn)確率11、在計算機視覺的場景理解任務(wù)中,需要理解整個圖像的語義信息。假設(shè)要分析一張城市街道的圖像中包含的物體和它們之間的關(guān)系,以下關(guān)于場景理解方法的描述,正確的是:()A.單獨對圖像中的每個物體進行識別和分類就能實現(xiàn)場景理解B.忽略圖像中的上下文信息和空間布局對場景理解沒有影響C.利用深度學(xué)習(xí)中的語義分割和圖模型可以更好地理解場景的結(jié)構(gòu)和語義關(guān)系D.場景理解只適用于簡單的室內(nèi)場景,對于復(fù)雜的戶外場景無法處理12、在計算機視覺的立體視覺任務(wù)中,通過兩個或多個相機獲取的圖像來計算深度信息。以下哪種立體匹配算法在精度和效率方面可能表現(xiàn)較好?()A.基于區(qū)域的匹配算法B.基于特征的匹配算法C.基于深度學(xué)習(xí)的匹配算法D.以上都是13、計算機視覺中的語義分割任務(wù)旨在為圖像中的每個像素分配一個類別標(biāo)簽。假設(shè)要對醫(yī)學(xué)圖像中的病變區(qū)域進行精確分割,以下哪種技術(shù)可能對提高分割精度有較大幫助?()A.使用更深的卷積神經(jīng)網(wǎng)絡(luò)架構(gòu)B.引入多尺度特征融合C.增加訓(xùn)練數(shù)據(jù)中的噪聲D.減少網(wǎng)絡(luò)中的參數(shù)數(shù)量14、在計算機視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲。以下關(guān)于圖像去噪方法的描述,正確的是:()A.中值濾波能夠有效地去除椒鹽噪聲,但會使圖像變得模糊B.均值濾波在去除噪聲的同時能夠很好地保留圖像的細(xì)節(jié)信息C.小波變換去噪方法計算復(fù)雜度高,不適合處理大規(guī)模圖像D.所有的圖像去噪方法都能夠完全恢復(fù)出原始的無噪圖像15、計算機視覺中的醫(yī)學(xué)圖像分析具有重要的臨床應(yīng)用價值。假設(shè)要從一組X光片中檢測出病變區(qū)域,同時要區(qū)分不同類型的病變。以下哪種技術(shù)和方法在醫(yī)學(xué)圖像分析中最為常用和有效?()A.形態(tài)學(xué)操作B.圖像分割與分類C.特征提取與選擇D.以上方法綜合運用二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺在林業(yè)中的應(yīng)用。2、(本題5分)計算機視覺中如何檢測圖像中的直線和圓?3、(本題5分)簡述計算機視覺在電力系統(tǒng)中的線路巡檢和故障檢測。4、(本題5分)解釋計算機視覺中的遷移學(xué)習(xí)在圖像識別中的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)運用圖像識別算法,對不同樂器的圖像進行分類和識別。2、(本題5分)使用深度學(xué)習(xí)模型,對歷史文物圖像進行年代和風(fēng)格的鑒定。3、(本題5分)設(shè)計一個基于計算機視覺的視網(wǎng)膜識別系統(tǒng)。4、(本題5分)通過計算機視覺,對不同類型的根雕作品進行分類。5、(本題5分)基于計算機視覺的智能工廠質(zhì)量檢測系統(tǒng),自動檢測產(chǎn)品外觀缺陷。四、分析題(本大題共4個小題,共40分)1、(本題10分)探討某藝術(shù)培訓(xùn)中心的招生簡章設(shè)計,研究其如何通過課程介紹、師資展示、學(xué)員作品、優(yōu)惠政策等吸引家長和學(xué)生報名。2、(本題10分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論