浙江省紹興市重點(diǎn)中學(xué)2025屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁
浙江省紹興市重點(diǎn)中學(xué)2025屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁
浙江省紹興市重點(diǎn)中學(xué)2025屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁
浙江省紹興市重點(diǎn)中學(xué)2025屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁
浙江省紹興市重點(diǎn)中學(xué)2025屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

浙江省紹興市重點(diǎn)中學(xué)2025屆高三(最后沖刺)數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.52.在中,角、、所對(duì)的邊分別為、、,若,則()A. B. C. D.3.已知,,則()A. B. C.3 D.44.若復(fù)數(shù)滿足(是虛數(shù)單位),則()A. B. C. D.5.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)()A. B. C. D.6.對(duì)于任意,函數(shù)滿足,且當(dāng)時(shí),函數(shù).若,則大小關(guān)系是()A. B. C. D.7.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.8.已知為虛數(shù)單位,實(shí)數(shù)滿足,則()A.1 B. C. D.9.下列四個(gè)圖象可能是函數(shù)圖象的是()A. B. C. D.10.若時(shí),,則的取值范圍為()A. B. C. D.11.一個(gè)頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計(jì)樣本在、內(nèi)的數(shù)據(jù)個(gè)數(shù)共有()A. B. C. D.12.已知全集,則集合的子集個(gè)數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足,則的展開式中的系數(shù)為______.14.已知集合,,則__________.15.正方體中,是棱的中點(diǎn),是側(cè)面上的動(dòng)點(diǎn),且平面,記與的軌跡構(gòu)成的平面為.①,使得;②直線與直線所成角的正切值的取值范圍是;③與平面所成銳二面角的正切值為;④正方體的各個(gè)側(cè)面中,與所成的銳二面角相等的側(cè)面共四個(gè).其中正確命題的序號(hào)是________.(寫出所有正確命題的序號(hào))16.已知,為正實(shí)數(shù),且,則的最小值為________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)若,求實(shí)數(shù)的取值范圍;(2)證明:,恒成立.18.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點(diǎn),且.19.(12分)設(shè)橢圓的離心率為,圓與軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長為.(1)求橢圓的方程;(2)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說明理由.20.(12分)如圖,三棱柱中,側(cè)面是菱形,其對(duì)角線的交點(diǎn)為,且.(1)求證:平面;(2)設(shè),若直線與平面所成的角為,求二面角的正弦值.21.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長度建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.22.(10分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心為的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.(1)若當(dāng)時(shí),,求此時(shí)的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡得答案.【詳解】由,得,解得.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘法運(yùn)算,是基礎(chǔ)題.2、D【解析】

利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.【點(diǎn)睛】本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.3、A【解析】

根據(jù)復(fù)數(shù)相等的特征,求出和,再利用復(fù)數(shù)的模公式,即可得出結(jié)果.【詳解】因?yàn)?,所以,解得則.故選:A.【點(diǎn)睛】本題考查相等復(fù)數(shù)的特征和復(fù)數(shù)的模,屬于基礎(chǔ)題.4、B【解析】

利用復(fù)數(shù)乘法運(yùn)算化簡,由此求得.【詳解】依題意,所以.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)的乘法運(yùn)算,考查復(fù)數(shù)模的計(jì)算,屬于基礎(chǔ)題.5、C【解析】

根據(jù)準(zhǔn)線的方程寫出拋物線的標(biāo)準(zhǔn)方程,再對(duì)照系數(shù)求解即可.【詳解】因?yàn)闇?zhǔn)線方程為,所以拋物線方程為,所以,即.故選:C【點(diǎn)睛】本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.6、A【解析】

由已知可得的單調(diào)性,再由可得對(duì)稱性,可求出在單調(diào)性,即可求出結(jié)論.【詳解】對(duì)于任意,函數(shù)滿足,因?yàn)楹瘮?shù)關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),是單調(diào)增函數(shù),所以在定義域上是單調(diào)增函數(shù).因?yàn)椋裕?故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較函數(shù)值的大小,解題的關(guān)鍵要掌握函數(shù)對(duì)稱性的代數(shù)形式,屬于中檔題..7、C【解析】

根據(jù)三棱柱的展開圖的可能情況選出選項(xiàng).【詳解】由圖可知,ABD選項(xiàng)可以圍成三棱柱,C選項(xiàng)不是三棱柱展開圖.故選:C【點(diǎn)睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎(chǔ)題.8、D【解析】,則故選D.9、C【解析】

首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個(gè)單位而得到,因?yàn)闉槠婧瘮?shù),即可得到函數(shù)圖象關(guān)于對(duì)稱,即可排除A、D,再根據(jù)時(shí)函數(shù)值,排除B,即可得解.【詳解】∵的定義域?yàn)?,其圖象可由的圖象沿軸向左平移1個(gè)單位而得到,∵為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,∴的圖象關(guān)于點(diǎn)成中心對(duì)稱.可排除A、D項(xiàng).當(dāng)時(shí),,∴B項(xiàng)不正確.故選:C【點(diǎn)睛】本題考查函數(shù)的性質(zhì)與識(shí)圖能力,一般根據(jù)四個(gè)選擇項(xiàng)來判斷對(duì)應(yīng)的函數(shù)性質(zhì),即可排除三個(gè)不符的選項(xiàng),屬于中檔題.10、D【解析】

由題得對(duì)恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對(duì)恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點(diǎn)睛】本題主要考查了不等式恒成立問題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.11、B【解析】

計(jì)算出樣本在的數(shù)據(jù)個(gè)數(shù),再減去樣本在的數(shù)據(jù)個(gè)數(shù)即可得出結(jié)果.【詳解】由題意可知,樣本在的數(shù)據(jù)個(gè)數(shù)為,樣本在的數(shù)據(jù)個(gè)數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個(gè)數(shù)為.故選:B.【點(diǎn)睛】本題考查利用頻數(shù)分布表計(jì)算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.12、C【解析】

先求B.再求,求得則子集個(gè)數(shù)可求【詳解】由題=,則集合,故其子集個(gè)數(shù)為故選C【點(diǎn)睛】此題考查了交、并、補(bǔ)集的混合運(yùn)算及子集個(gè)數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

根據(jù)二項(xiàng)式定理求出,然后再由二項(xiàng)式定理或多項(xiàng)式的乘法法則結(jié)合組合的知識(shí)求得系數(shù).【詳解】由題意,.∴的展開式中的系數(shù)為.故答案為:1.【點(diǎn)睛】本題考查二項(xiàng)式定理,掌握二項(xiàng)式定理的應(yīng)用是解題關(guān)鍵.14、【解析】

直接根據(jù)集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點(diǎn)睛】本題考查集合的交集運(yùn)算,是基礎(chǔ)題.15、①②③④【解析】

取中點(diǎn),中點(diǎn),中點(diǎn),先利用中位線的性質(zhì)判斷點(diǎn)的運(yùn)動(dòng)軌跡為線段,平面即為平面,畫出圖形,再依次判斷:①利用等腰三角形的性質(zhì)即可判斷;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長為2,進(jìn)而求解;③由,取為中點(diǎn),則,則即為與平面所成的銳二面角,進(jìn)而求解;④由平行的性質(zhì)及圖形判斷即可.【詳解】取中點(diǎn),連接,則,所以,所以平面即為平面,取中點(diǎn),中點(diǎn),連接,則易證得,所以平面平面,所以點(diǎn)的運(yùn)動(dòng)軌跡為線段,平面即為平面.①取為中點(diǎn),因?yàn)槭堑妊切?所以,又因?yàn)?所以,故①正確;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長為2,當(dāng)點(diǎn)為中點(diǎn)時(shí),直線與直線所成角最小,此時(shí),;當(dāng)點(diǎn)與點(diǎn)或點(diǎn)重合時(shí),直線與直線所成角最大,此時(shí),所以直線與直線所成角的正切值的取值范圍是,②正確;③與平面的交線為,且,取為中點(diǎn),則即為與平面所成的銳二面角,,所以③正確;④正方體的各個(gè)側(cè)面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.故答案為:①②③④【點(diǎn)睛】本題考查直線與平面的空間位置關(guān)系,考查異面直線成角,二面角,考查空間想象能力與轉(zhuǎn)化思想.16、【解析】

由,為正實(shí)數(shù),且,可知,于是,可得,再利用基本不等式即可得出結(jié)果.【詳解】解:,為正實(shí)數(shù),且,可知,,.當(dāng)且僅當(dāng)時(shí)取等號(hào).的最小值為.故答案為:.【點(diǎn)睛】本題考查了基本不等式的性質(zhì)應(yīng)用,恰當(dāng)變形是解題的關(guān)鍵,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)將不等式化為,利用零點(diǎn)分段法,求得不等式的解集.(2)將要證明的不等式轉(zhuǎn)化為證,恒成立,由的最小值為,得到只要證,即證,利用絕對(duì)值不等式和基本不等式,證得上式成立.【詳解】(1)∵,∴,即當(dāng)時(shí),不等式化為,∴當(dāng)時(shí),不等式化為,此時(shí)無解當(dāng)時(shí),不等式化為,∴綜上,原不等式的解集為(2)要證,恒成立即證,恒成立∵的最小值為-2,∴只需證,即證又∴成立,∴原題得證【點(diǎn)睛】本題考查絕對(duì)值不等式的性質(zhì)、解法,基本不等式等知識(shí);考查推理論證能力、運(yùn)算求解能力;考查化歸與轉(zhuǎn)化,分類與整合思想.18、(1)(2)證明見解析【解析】

(1)求導(dǎo),可得(1),(1),結(jié)合已知切線方程即可求得,的值;(2)利用導(dǎo)數(shù)可得,,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求其最值即可得證.【詳解】(1)函數(shù)的定義域?yàn)?,,則(1),(1),故曲線在點(diǎn),(1)處的切線方程為,又曲線在點(diǎn),(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調(diào)遞減,又,(1),故存在,使得,且當(dāng)時(shí),,單調(diào)遞增,當(dāng),時(shí),,單調(diào)遞減,由于,(1),(2),故存在,使得,且當(dāng)時(shí),,,單調(diào)遞增,當(dāng),時(shí),,,單調(diào)遞減,故函數(shù)存在唯一的極大值點(diǎn),且,即,則,令,則,故在上單調(diào)遞增,由于,故(2),即,.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值及最值,考查推理論證能力,屬于中檔題.19、(1);(2)見解析.【解析】

(I)結(jié)合離心率,得到a,b,c的關(guān)系,計(jì)算A的坐標(biāo),計(jì)算切線與橢圓交點(diǎn)坐標(biāo),代入橢圓方程,計(jì)算參數(shù),即可.(II)分切線斜率存在與不存在討論,設(shè)出M,N的坐標(biāo),設(shè)出切線方程,結(jié)合圓心到切線距離公式,得到m,k的關(guān)系式,將直線方程代入橢圓方程,利用根與系數(shù)關(guān)系,表示,結(jié)合三角形相似,證明結(jié)論,即可.【詳解】(Ⅰ)設(shè)橢圓的半焦距為,由橢圓的離心率為知,,∴橢圓的方程可設(shè)為.易求得,∴點(diǎn)在橢圓上,∴,解得,∴橢圓的方程為.(Ⅱ)當(dāng)過點(diǎn)且與圓相切的切線斜率不存在時(shí),不妨設(shè)切線方程為,由(Ⅰ)知,,,∴.當(dāng)過點(diǎn)且與圓相切的切線斜率存在時(shí),可設(shè)切線的方程為,,∴,即.聯(lián)立直線和橢圓的方程得,∴,得.∵,∴,,∴.綜上所述,圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),都有.在中,由與相似得,為定值.【點(diǎn)睛】本道題考查了橢圓方程的求解,考查了直線與橢圓位置關(guān)系,考查了向量的坐標(biāo)運(yùn)算,難度偏難.20、(1)見解析;(2).【解析】

(1)根據(jù)菱形的特征和題中條件得到平面,結(jié)合線面垂直的定義和判定定理即可證明;

2建立空間直角坐標(biāo)系,利用向量知識(shí)求解即可.【詳解】(1)證明:∵四邊形是菱形,,平面平面,又是的中點(diǎn),,又平面(2)∴直線與平面所成的角等于直線與平面所成的角.平面,∴直線與平面所成的角為,即.因?yàn)?,則在等腰直角三角形中,所以.在中,由得,以為原點(diǎn),分別以為軸建立空間直角坐標(biāo)系.則所以設(shè)平面的一個(gè)法向量為,則,可得,取平面的一個(gè)法向量為,則,所以二面角的正弦值的大小為.(注:問題(2)可以轉(zhuǎn)化為求二面角的正弦值,求出后,在中,過點(diǎn)作的垂線,垂足為,連接,則就是所求二面角平面角的補(bǔ)角,先求出,再求出,最后在中求出.)【點(diǎn)睛】本題主要考查了線面垂直的判定以及二面角的求解,屬于中檔題.21、(1),表示圓心為,半徑為的圓;(2)【解析】

(1)根據(jù)參數(shù)得到直角坐標(biāo)系方程,再轉(zhuǎn)化為極坐標(biāo)方程得到答案.(2)直線方程為,計(jì)算圓心到直線的距離加上半徑得到答案.【詳解】(1),即,化簡得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點(diǎn)到直線的最大距離為.【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,直線和圓的距離的最值,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.22、(1);(2)(i),;(ii).【解析】

(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論