2025屆深圳市第二高級中學高考沖刺模擬數(shù)學試題含解析_第1頁
2025屆深圳市第二高級中學高考沖刺模擬數(shù)學試題含解析_第2頁
2025屆深圳市第二高級中學高考沖刺模擬數(shù)學試題含解析_第3頁
2025屆深圳市第二高級中學高考沖刺模擬數(shù)學試題含解析_第4頁
2025屆深圳市第二高級中學高考沖刺模擬數(shù)學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆深圳市第二高級中學高考沖刺模擬數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《算數(shù)書》竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學典籍.其中記載有求“囷蓋”的術:“置如其周,令相承也.又以高乘之,三十六成一”.該術相當于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當于將圓錐體積公式中的圓周率近似取為()A. B. C. D.2.若單位向量,夾角為,,且,則實數(shù)()A.-1 B.2 C.0或-1 D.2或-13.已知角的終邊與單位圓交于點,則等于()A. B. C. D.4.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.5.已知復數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知正項等比數(shù)列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.47.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.二項式展開式中,項的系數(shù)為()A. B. C. D.9.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,10.函數(shù)fxA. B.C. D.11.已知,則,不可能滿足的關系是()A. B. C. D.12.設雙曲線的一條漸近線為,且一個焦點與拋物線的焦點相同,則此雙曲線的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若,則的取值范圍是__14.在的展開式中,項的系數(shù)是__________(用數(shù)字作答).15.已知,在方向上的投影為,則與的夾角為_________.16.已知函數(shù)圖象上一點處的切線方程為,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點,且與圓相切.(1)求的值;(2)動點在拋物線的準線上,動點在上,若在點處的切線交軸于點,設.求證點在定直線上,并求該定直線的方程.18.(12分)已知函數(shù),設的最小值為m.(1)求m的值;(2)是否存在實數(shù)a,b,使得,?并說明理由.19.(12分)已知,,分別為內角,,的對邊,若同時滿足下列四個條件中的三個:①;②;③;④.(1)滿足有解三角形的序號組合有哪些?(2)在(1)所有組合中任選一組,并求對應的面積.(若所選條件出現(xiàn)多種可能,則按計算的第一種可能計分)20.(12分)隨著科技的發(fā)展,網(wǎng)絡已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調查機構進行了有關網(wǎng)購的調查問卷,并從參與調查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)經(jīng)常網(wǎng)購偶爾或不用網(wǎng)購合計男性50100女性70100合計(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關?(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;②將頻率視為概率,從我市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機變量的數(shù)學期望和方差.參考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)在直角坐標系中,直線的參數(shù)方程為.(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程及的直角坐標方程;(2)求曲線上的點到距離的取值范圍.22.(10分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

將圓錐的體積用兩種方式表達,即,解出即可.【詳解】設圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數(shù)學問題考查圓錐體積計算的實際應用,考查學生的運算求解能力、創(chuàng)新能力.2、D【解析】

利用向量模的運算列方程,結合向量數(shù)量積的運算,求得實數(shù)的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數(shù)量積的運算,屬于基礎題.3、B【解析】

先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點,,故選:B【點睛】考查三角函數(shù)的定義和二倍角公式,是基礎題.4、A【解析】

觀察可知,這個幾何體由兩部分構成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積。【詳解】設半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A。【點睛】本題通過三視圖考察空間識圖的能力,屬于基礎題。5、C【解析】分析:根據(jù)復數(shù)的運算,求得復數(shù)z,再利用復數(shù)的表示,即可得到復數(shù)對應的點,得到答案.詳解:由題意,復數(shù)z=2i1-i所以復數(shù)z在復平面內對應的點的坐標為(-1,-1),位于復平面內的第三象限,故選C.點睛:本題主要考查了復數(shù)的四則運算及復數(shù)的表示,其中根據(jù)復數(shù)的四則運算求解復數(shù)z是解答的關鍵,著重考查了推理與運算能力.6、D【解析】

由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設等比數(shù)列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數(shù)列的知識,是一道中檔題.7、B【解析】

先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學生數(shù)學運算,邏輯推理能力,屬于基礎題.8、D【解析】

寫出二項式的通項公式,再分析的系數(shù)求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數(shù)為.故選:D【點睛】本題主要考查了二項式定理的運算,屬于基礎題.9、A【解析】

設,取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設,延長到,使得.,,,,則,由余弦定理得,,,又,,當平面平面時,,,排除B、D選項;因為,,此時,,當平面平面時,,,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.10、A【解析】

由f12=e-14>0排除選項D;【詳解】由f12=e-14>0,可排除選項D,f-1=-e【點睛】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質,屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調性、奇偶性、特殊點以及x→011、C【解析】

根據(jù)即可得出,,根據(jù),,即可判斷出結果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數(shù)式和對數(shù)式的互化,對數(shù)的運算,以及基本不等式:和不等式的應用,屬于中檔題12、C【解析】

求得拋物線的焦點坐標,可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點睛】本題主要考查了求雙曲線的方程,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)分段函數(shù)的性質,即可求出的取值范圍.【詳解】當時,,,當時,,所以,故的取值范圍是.故答案為:.【點睛】本題考查分段函數(shù)的性質,已知分段函數(shù)解析式求參數(shù)范圍,還涉及對數(shù)和指數(shù)的運算,屬于基礎題.14、【解析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數(shù).15、【解析】

由向量投影的定義可求得兩向量夾角的余弦值,從而得角的大?。驹斀狻吭诜较蛏系耐队盀椋磰A角為.故答案為:.【點睛】本題考查求向量的夾角,掌握向量投影的定義是解題關鍵.16、1【解析】

求出導函數(shù),由切線方程得切線斜率和切點坐標,從而可求得.【詳解】由題意,∵函數(shù)圖象在點處的切線方程為,∴,解得,∴.故答案為:1.【點睛】本題考查導數(shù)的幾何意義,求出導函數(shù)是解題基礎,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)點在定直線上.【解析】

(1)設出直線的方程為,由直線和圓相切的條件:,解得;(2)設出,運用導數(shù)求得切線的斜率,求得為切點的切線方程,再由向量的坐標表示,可得在定直線上;【詳解】解:(1)依題意設直線的方程為,由已知得:圓的圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,即,解得或(舍去).所以;(2)依題意設,由(1)知拋物線方程為,所以,所以,設,則以為切點的切線的斜率為,所以切線的方程為.令,,即交軸于點坐標為,所以,,,.設點坐標為,則,所以點在定直線上.【點睛】本題考查拋物線的方程和性質,直線與圓的位置關系的判斷,考查直線方程和圓方程的運用,以及切線方程的求法,考查化簡整理的運算能力,屬于綜合題.18、(1)(2)不存在;詳見解析【解析】

(1)將函數(shù)去絕對值化為分段函數(shù)的形式,從而可求得函數(shù)的最小值,進而可得m.(2)由,利用基本不等式即可求出.【詳解】(1);(2),若,同號,,不成立;或,異號,,不成立;故不存在實數(shù),,使得,.【點睛】本題考查了分段函數(shù)的最值、基本不等式的應用,屬于基礎題.19、(1)①,③,④或②,③,④;(2).【解析】

(1)由①可求得的值,由②可求出角的值,結合題意得出,推出矛盾,可得出①②不能同時成為的條件,由此可得出結論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對應的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因為,且,所以,所以,矛盾.所以不能同時滿足①,②.故滿足①,③,④或②,③,④;(2)若滿足①,③,④,因為,所以,即.解得.所以的面積.若滿足②,③,④由正弦定理,即,解得,所以,所以的面積.【點睛】本題考查三角形能否成立的判斷,同時也考查了利用正弦定理和余弦定理解三角形,以及三角形面積的計算,要結合三角形已知元素類型合理選擇正弦定理或余弦定理解三角形,考查運算求解能力,屬于中等題.20、(Ⅰ)詳見解析;(Ⅱ)①;②數(shù)學期望為6,方差為2.4.【解析】

(1)完成列聯(lián)表,由列聯(lián)表,得,由此能在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關.(2)①由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購的有人,偶爾或不用網(wǎng)購的有人,由此能選取的3人中至少有2人經(jīng)常網(wǎng)購的概率.②由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購的市民的頻率為:,由題意,由此能求出隨機變量的數(shù)學期望和方差.【詳解】解:(1)完成列聯(lián)表(單位:人):經(jīng)常網(wǎng)購偶爾或不用網(wǎng)購合計男性5050100女性7030100合計12080200由列聯(lián)表,得:,∴能在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關.(2)①由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購的有人,偶爾或不用網(wǎng)購的有人,∴選取的3人中至少有2人經(jīng)常網(wǎng)購的概率為:.②由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購的市民的頻率為:,將頻率視為概率,∴從我市市民中任意抽取一人,恰好抽到經(jīng)常網(wǎng)購市民的概率為0.6,由題意,∴隨機變量的數(shù)學期望,方差D(X)=.【點睛】本題考查獨立檢驗的應用,考查概率、離散型隨機變量的分布列、數(shù)學期望、方差的求法,考查古典概型、二項分布等基礎知識,考查運算求解能力,是中檔題.21、(1),.(2)【解析】

(1)根據(jù)直線的參數(shù)方程為(為參數(shù)),消去參數(shù),即可求得的的普通方程,曲線的極坐標方程為,利用極坐標化直角坐標的公式:,即可求得答案;(2)的標準方程為,圓心為,半徑為,根據(jù)點到直線距離公式,即可求得答案.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去參數(shù)的普通方程為.曲線的極坐標方程為,利用極坐標化直角坐標的公式:的直角坐標方程為.(2)的標準方程為,圓心為,半徑為圓心到的距離為,點到的距離的取值范圍是.【點睛】本題解題關鍵是掌握極

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論