武漢晴川學(xué)院《光構(gòu)成》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
武漢晴川學(xué)院《光構(gòu)成》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
武漢晴川學(xué)院《光構(gòu)成》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
武漢晴川學(xué)院《光構(gòu)成》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
武漢晴川學(xué)院《光構(gòu)成》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)武漢晴川學(xué)院

《光構(gòu)成》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)的圖像檢索任務(wù)中,需要根據(jù)用戶提供的查詢圖像找到相似的圖像。假設(shè)我們有一個(gè)大型的圖像數(shù)據(jù)庫(kù),以下哪種圖像表示方法能夠提高圖像檢索的效率和準(zhǔn)確性?()A.基于全局特征的圖像表示B.基于局部特征的圖像表示C.基于深度學(xué)習(xí)的圖像嵌入表示D.基于顏色直方圖的圖像表示2、對(duì)于圖像的邊緣檢測(cè)任務(wù),假設(shè)要準(zhǔn)確檢測(cè)出圖像中物體的邊緣,同時(shí)抑制噪聲的影響。以下哪種邊緣檢測(cè)算子可能表現(xiàn)更好?()A.Sobel算子B.Roberts算子C.Prewitt算子D.隨機(jī)生成邊緣檢測(cè)結(jié)果3、計(jì)算機(jī)視覺(jué)在無(wú)人駕駛飛行器(UAV)中的應(yīng)用可以實(shí)現(xiàn)自主導(dǎo)航和環(huán)境感知。假設(shè)一個(gè)UAV需要在復(fù)雜的環(huán)境中飛行并避開(kāi)障礙物。以下關(guān)于計(jì)算機(jī)視覺(jué)在UAV中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)視覺(jué)傳感器獲取周圍環(huán)境的信息,包括地形、建筑物和其他障礙物B.能夠?qū)崟r(shí)分析圖像,計(jì)算與障礙物的距離和相對(duì)速度,為飛行決策提供依據(jù)C.計(jì)算機(jī)視覺(jué)在UAV中的應(yīng)用完全不需要與其他傳感器(如慣性測(cè)量單元)的數(shù)據(jù)融合D.可以利用深度學(xué)習(xí)算法進(jìn)行端到端的飛行控制,實(shí)現(xiàn)自主飛行4、在計(jì)算機(jī)視覺(jué)領(lǐng)域中,當(dāng)需要對(duì)監(jiān)控視頻中的行人進(jìn)行實(shí)時(shí)檢測(cè)和跟蹤,以實(shí)現(xiàn)智能安防系統(tǒng)的功能時(shí),以下哪種方法在處理復(fù)雜場(chǎng)景和多目標(biāo)跟蹤方面可能表現(xiàn)更為出色?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法C.基于特征匹配的跟蹤算法D.基于光流法的跟蹤算法5、假設(shè)要構(gòu)建一個(gè)能夠識(shí)別人臉表情的計(jì)算機(jī)視覺(jué)系統(tǒng),用于情感分析和人機(jī)交互??紤]到表情的細(xì)微變化和個(gè)體差異,以下哪種模型架構(gòu)可能更適合處理這種復(fù)雜的任務(wù)?()A.多層感知機(jī)B.卷積神經(jīng)網(wǎng)絡(luò)C.循環(huán)神經(jīng)網(wǎng)絡(luò)D.生成對(duì)抗網(wǎng)絡(luò)6、圖像分割是將圖像分成不同的區(qū)域或?qū)ο?。假設(shè)要對(duì)醫(yī)學(xué)影像中的腫瘤區(qū)域進(jìn)行精確分割,以下關(guān)于圖像分割方法的描述,正確的是:()A.手動(dòng)分割是最準(zhǔn)確的方法,不需要借助計(jì)算機(jī)算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學(xué)影像分割問(wèn)題C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)及其變體在醫(yī)學(xué)圖像分割中具有很大的潛力D.圖像分割的結(jié)果只取決于所使用的分割算法,與圖像的預(yù)處理無(wú)關(guān)7、目標(biāo)檢測(cè)是計(jì)算機(jī)視覺(jué)中的重要任務(wù)之一,旨在定位和識(shí)別圖像中的多個(gè)目標(biāo)。假設(shè)我們要在城市街道的圖像中檢測(cè)行人和車輛。對(duì)于處理這種復(fù)雜場(chǎng)景的目標(biāo)檢測(cè)任務(wù),以下哪種技術(shù)通常能提供更準(zhǔn)確的檢測(cè)結(jié)果?()A.基于滑動(dòng)窗口的傳統(tǒng)目標(biāo)檢測(cè)方法B.基于區(qū)域提議的目標(biāo)檢測(cè)算法,如R-CNN系列C.基于回歸的一階段目標(biāo)檢測(cè)算法,如YOLO系列D.基于聚類的目標(biāo)檢測(cè)方法8、計(jì)算機(jī)視覺(jué)中的視頻理解任務(wù)包括對(duì)視頻內(nèi)容的分析和解釋。假設(shè)要理解一段新聞視頻的主要內(nèi)容和事件發(fā)展。以下關(guān)于視頻理解的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)對(duì)視頻中的幀進(jìn)行分類、目標(biāo)檢測(cè)和跟蹤來(lái)實(shí)現(xiàn)視頻理解B.深度學(xué)習(xí)中的注意力機(jī)制可以幫助聚焦視頻中的關(guān)鍵信息,提高理解的準(zhǔn)確性C.視頻理解只需要關(guān)注視覺(jué)信息,不需要考慮音頻和文字等其他模態(tài)的信息D.可以結(jié)合知識(shí)圖譜和語(yǔ)義理解技術(shù),對(duì)視頻中的內(nèi)容進(jìn)行更深入的分析和解釋9、在計(jì)算機(jī)視覺(jué)的圖像配準(zhǔn)任務(wù)中,需要將不同時(shí)間或視角拍攝的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進(jìn)行精確配準(zhǔn),圖像中存在地形變化和云層遮擋。以下哪種圖像配準(zhǔn)方法在這種困難情況下能夠取得較好的效果?()A.基于特征的配準(zhǔn)B.基于灰度的配準(zhǔn)C.基于變換模型的配準(zhǔn)D.基于深度學(xué)習(xí)的配準(zhǔn)10、在計(jì)算機(jī)視覺(jué)的應(yīng)用中,人臉識(shí)別技術(shù)受到廣泛關(guān)注。假設(shè)一個(gè)人臉識(shí)別系統(tǒng)正在進(jìn)行身份驗(yàn)證,以下關(guān)于人臉識(shí)別的描述,正確的是:()A.只依靠面部的幾何形狀信息就能實(shí)現(xiàn)準(zhǔn)確的人臉識(shí)別B.光照變化和面部表情對(duì)人臉識(shí)別的準(zhǔn)確率沒(méi)有影響C.結(jié)合深度學(xué)習(xí)模型和多模態(tài)信息,如紅外圖像,可以提高人臉識(shí)別的性能和可靠性D.人臉識(shí)別系統(tǒng)不需要考慮數(shù)據(jù)的隱私和安全問(wèn)題11、計(jì)算機(jī)視覺(jué)在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過(guò)攝像頭監(jiān)控一個(gè)公共場(chǎng)所,以下關(guān)于計(jì)算機(jī)視覺(jué)在安防監(jiān)控中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以實(shí)時(shí)檢測(cè)異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進(jìn)行身份識(shí)別和認(rèn)證C.計(jì)算機(jī)視覺(jué)系統(tǒng)可以獨(dú)立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力12、計(jì)算機(jī)視覺(jué)中的特征提取是非常關(guān)鍵的一步。以下關(guān)于特征提取方法的描述,不準(zhǔn)確的是()A.傳統(tǒng)的特征提取方法如SIFT(尺度不變特征變換)和HOG(方向梯度直方圖)在特定場(chǎng)景下仍然有效B.深度學(xué)習(xí)中的自動(dòng)特征提取能夠?qū)W習(xí)到更具代表性和魯棒性的特征C.特征提取的好壞直接影響后續(xù)的圖像分類、目標(biāo)檢測(cè)等任務(wù)的性能D.特征提取只關(guān)注圖像的局部信息,而忽略了全局信息13、在計(jì)算機(jī)視覺(jué)的目標(biāo)識(shí)別任務(wù)中,除了識(shí)別目標(biāo)的類別,還需要確定目標(biāo)的位置和大小。假設(shè)我們要在一幅復(fù)雜的圖像中識(shí)別多個(gè)不同大小的物體,以下哪種目標(biāo)識(shí)別算法能夠適應(yīng)不同尺度的目標(biāo)?()A.基于滑動(dòng)窗口的目標(biāo)識(shí)別算法B.基于特征金字塔的目標(biāo)識(shí)別算法C.基于注意力機(jī)制的目標(biāo)識(shí)別算法D.基于模板匹配的目標(biāo)識(shí)別算法14、在三維計(jì)算機(jī)視覺(jué)中,重建物體的三維形狀是一個(gè)重要任務(wù)。假設(shè)要從多視角的圖像中重建一個(gè)建筑物的三維模型,以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺(jué)的方法能夠直接從兩張圖像中準(zhǔn)確重建出物體的三維形狀B.結(jié)構(gòu)光方法在室外環(huán)境中比在室內(nèi)環(huán)境中更適用C.多視圖幾何和深度學(xué)習(xí)相結(jié)合的方法可以提高三維重建的精度和完整性D.三維重建的結(jié)果不受圖像拍攝角度和距離的影響15、當(dāng)處理低光照條件下拍攝的圖像時(shí),為了增強(qiáng)圖像的亮度和對(duì)比度,同時(shí)減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡(jiǎn)單地增加圖像的整體亮度值D.不進(jìn)行任何處理,保留低光照效果16、在計(jì)算機(jī)視覺(jué)中,圖像分類是一項(xiàng)重要任務(wù)。假設(shè)我們要對(duì)大量的動(dòng)物圖片進(jìn)行分類,將其分為貓、狗、鳥(niǎo)等類別。以下關(guān)于圖像分類方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色,能夠自動(dòng)學(xué)習(xí)圖像的特征B.傳統(tǒng)的機(jī)器學(xué)習(xí)方法如支持向量機(jī)(SVM)在處理大規(guī)模圖像數(shù)據(jù)時(shí),性能通常不如深度學(xué)習(xí)方法C.圖像分類只需要考慮圖像的顏色和形狀等低層次特征,高層語(yǔ)義信息對(duì)分類結(jié)果影響不大D.為了提高分類準(zhǔn)確率,可以使用數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪等操作來(lái)擴(kuò)充數(shù)據(jù)集17、計(jì)算機(jī)視覺(jué)中的人臉識(shí)別技術(shù)應(yīng)用廣泛。假設(shè)要在一個(gè)門(mén)禁系統(tǒng)中實(shí)現(xiàn)準(zhǔn)確的人臉識(shí)別,以下關(guān)于人臉識(shí)別方法的描述,正確的是:()A.基于幾何特征的人臉識(shí)別方法對(duì)姿態(tài)和光照變化具有很強(qiáng)的魯棒性B.基于模板匹配的方法能夠處理大規(guī)模的人臉數(shù)據(jù)庫(kù),并且識(shí)別速度快C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在人臉識(shí)別中能夠?qū)W習(xí)到更具判別性的特征,但容易受到數(shù)據(jù)偏差的影響D.人臉識(shí)別系統(tǒng)一旦訓(xùn)練完成,就不需要更新和優(yōu)化,能夠一直保持高準(zhǔn)確率18、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,假設(shè)要從一系列二維圖像重建出物體的三維模型。以下關(guān)于相機(jī)參數(shù)校準(zhǔn)的重要性,哪一項(xiàng)是不正確的?()A.準(zhǔn)確的相機(jī)參數(shù)有助于提高三維重建的精度B.相機(jī)參數(shù)校準(zhǔn)可以減少重建過(guò)程中的誤差累積C.即使相機(jī)參數(shù)不準(zhǔn)確,也能通過(guò)后續(xù)處理得到精確的三維模型D.不同相機(jī)的參數(shù)差異會(huì)影響三維重建的結(jié)果19、計(jì)算機(jī)視覺(jué)中的圖像增強(qiáng)旨在改善圖像的質(zhì)量和視覺(jué)效果。假設(shè)一張低對(duì)比度、有噪聲的醫(yī)學(xué)圖像需要進(jìn)行增強(qiáng)處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強(qiáng)技術(shù)最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波20、計(jì)算機(jī)視覺(jué)中的紋理分析用于描述圖像中重復(fù)出現(xiàn)的模式和結(jié)構(gòu)。假設(shè)要對(duì)一塊布料的紋理進(jìn)行分析,以判斷其材質(zhì)和質(zhì)量,同時(shí)布料可能存在褶皺和變形。以下哪種紋理分析方法在處理這種復(fù)雜情況時(shí)更為準(zhǔn)確?()A.統(tǒng)計(jì)紋理分析B.結(jié)構(gòu)紋理分析C.基于模型的紋理分析D.基于深度學(xué)習(xí)的紋理分析二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺(jué)中自監(jiān)督學(xué)習(xí)的任務(wù)和方法。2、(本題5分)描述計(jì)算機(jī)視覺(jué)在泥石流預(yù)警中的應(yīng)用。3、(本題5分)解釋計(jì)算機(jī)視覺(jué)在刑偵中的應(yīng)用。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)分析某時(shí)尚雜志的封面設(shè)計(jì),研究其如何通過(guò)攝影、字體設(shè)計(jì)、色彩組合等元素來(lái)體現(xiàn)時(shí)尚感和當(dāng)期主題,引發(fā)讀者興趣。2、(本題5分)某公益活動(dòng)的T恤設(shè)計(jì)簡(jiǎn)潔有力,主題圖案醒目。請(qǐng)研究此T恤設(shè)計(jì)如何傳播公益理念,如何吸引志愿者和公眾參與,以及在提升活動(dòng)影響力方面的作用。3、(本題5分)研究某藝術(shù)展覽的邀請(qǐng)函設(shè)計(jì),分析其如何通過(guò)材質(zhì)選擇、印刷工藝和排版設(shè)計(jì)來(lái)體現(xiàn)藝術(shù)感和獨(dú)特性,邀請(qǐng)嘉賓參與。4、(本題5分

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論