武漢商學(xué)院《人工神經(jīng)網(wǎng)絡(luò)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
武漢商學(xué)院《人工神經(jīng)網(wǎng)絡(luò)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
武漢商學(xué)院《人工神經(jīng)網(wǎng)絡(luò)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
武漢商學(xué)院《人工神經(jīng)網(wǎng)絡(luò)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
武漢商學(xué)院《人工神經(jīng)網(wǎng)絡(luò)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁武漢商學(xué)院

《人工神經(jīng)網(wǎng)絡(luò)》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的文本生成任務(wù)中,假設(shè)要生成一篇邏輯連貫、語言通順的文章,以下關(guān)于文本生成模型的描述,正確的是:()A.基于規(guī)則的文本生成方法能夠保證生成的文章完全符合語法和邏輯B.深度學(xué)習(xí)的文本生成模型可以學(xué)習(xí)語言的模式和規(guī)律,但可能存在重復(fù)和不一致的問題C.文本生成模型的輸出完全由輸入的提示信息決定,沒有任何隨機(jī)性D.現(xiàn)有的文本生成模型已經(jīng)能夠生成與人類寫作水平相當(dāng)?shù)奈恼?、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù)。以下關(guān)于聯(lián)邦學(xué)習(xí)的說法,不正確的是()A.聯(lián)邦學(xué)習(xí)可以在保護(hù)數(shù)據(jù)隱私的前提下,實現(xiàn)多個參與方之間的模型訓(xùn)練和共享B.解決了數(shù)據(jù)在不同機(jī)構(gòu)之間難以流通和共享的問題C.聯(lián)邦學(xué)習(xí)的通信開銷較大,限制了其在大規(guī)模數(shù)據(jù)上的應(yīng)用D.聯(lián)邦學(xué)習(xí)技術(shù)已經(jīng)非常成熟,不存在任何技術(shù)挑戰(zhàn)和安全風(fēng)險3、在人工智能的機(jī)器翻譯任務(wù)中,需要將一種語言翻譯成另一種語言。假設(shè)要翻譯的文本涉及專業(yè)領(lǐng)域的術(shù)語和特定的文化背景知識。以下哪種方法能夠提高翻譯的準(zhǔn)確性和專業(yè)性?()A.使用通用的機(jī)器翻譯模型,不進(jìn)行任何定制B.結(jié)合領(lǐng)域詞典和知識圖譜進(jìn)行翻譯C.依靠人工翻譯,不使用機(jī)器翻譯D.隨機(jī)選擇翻譯結(jié)果,不考慮準(zhǔn)確性4、深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類等任務(wù)中取得了顯著成果。假設(shè)要使用CNN對大量的動物圖片進(jìn)行分類。以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項是不正確的?()A.卷積層通過卷積操作提取圖像的局部特征B.池化層用于減少特征圖的尺寸,降低計算量,同時保留主要特征C.隨著網(wǎng)絡(luò)層數(shù)的增加,CNN的性能一定會不斷提高D.可以通過調(diào)整卷積核的大小、數(shù)量和網(wǎng)絡(luò)結(jié)構(gòu)來優(yōu)化CNN的性能5、在人工智能的知識圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。假設(shè)要為一個特定領(lǐng)域構(gòu)建知識圖譜,以下關(guān)于數(shù)據(jù)來源的選擇,哪一項是最關(guān)鍵的?()A.只選擇權(quán)威的學(xué)術(shù)文獻(xiàn)和研究報告,確保知識的準(zhǔn)確性B.廣泛收集互聯(lián)網(wǎng)上的各種信息,包括社交媒體和博客等C.結(jié)合行業(yè)專家的經(jīng)驗和知識,以及相關(guān)的數(shù)據(jù)庫和文檔D.隨機(jī)選擇一些數(shù)據(jù)來源,不進(jìn)行篩選和評估6、在一個利用人工智能進(jìn)行天氣預(yù)報的系統(tǒng)中,為了提高預(yù)測的精度和時效性,以下哪個因素可能是需要重點關(guān)注和改進(jìn)的?()A.氣象數(shù)據(jù)的質(zhì)量和多樣性B.模型的復(fù)雜度和計算效率C.模型的融合和集成D.以上都是7、在人工智能的農(nóng)業(yè)應(yīng)用中,精準(zhǔn)農(nóng)業(yè)可以通過傳感器和數(shù)據(jù)分析實現(xiàn)對農(nóng)作物的精細(xì)化管理。假設(shè)要根據(jù)土壤濕度和氣象數(shù)據(jù)決定灌溉量,以下哪個技術(shù)環(huán)節(jié)是最關(guān)鍵的?()A.數(shù)據(jù)的采集和傳輸B.數(shù)據(jù)分析和建模C.灌溉設(shè)備的控制D.傳感器的校準(zhǔn)8、人工智能在物流配送中的路徑規(guī)劃方面具有應(yīng)用潛力。假設(shè)要為快遞配送車輛規(guī)劃最優(yōu)路徑,以下關(guān)于其應(yīng)用的描述,哪一項是不準(zhǔn)確的?()A.考慮交通狀況、貨物重量和配送時間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時間內(nèi)找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會受到任何突發(fā)情況的影響D.實時更新路況信息,動態(tài)調(diào)整配送路徑,提高配送效率9、在人工智能的語音識別任務(wù)中,需要克服許多挑戰(zhàn)。假設(shè)要開發(fā)一個能夠在嘈雜環(huán)境中準(zhǔn)確識別語音的系統(tǒng),以下關(guān)于解決噪聲問題的方法,哪一項是不正確的?()A.使用麥克風(fēng)陣列技術(shù),對多個麥克風(fēng)采集的信號進(jìn)行處理,增強(qiáng)有用信號,抑制噪聲B.采用深度學(xué)習(xí)中的降噪自編碼器,對輸入的語音信號進(jìn)行預(yù)處理,去除噪聲C.完全忽略噪聲,只關(guān)注語音的關(guān)鍵特征D.利用語音增強(qiáng)算法,提高語音的信噪比10、在人工智能的自動駕駛領(lǐng)域,車輛需要根據(jù)周圍環(huán)境的感知信息做出決策,如加速、減速、轉(zhuǎn)彎等。假設(shè)車輛面臨復(fù)雜的交通場景,包括多個車輛、行人、交通信號燈等,為了確保安全和高效的駕駛決策,以下哪種技術(shù)或方法是至關(guān)重要的?()A.基于規(guī)則的決策制定,遵循固定的交通規(guī)則B.深度學(xué)習(xí)模型,自動從大量數(shù)據(jù)中學(xué)習(xí)決策模式C.隨機(jī)決策,根據(jù)概率選擇行動D.不考慮其他車輛和行人,只關(guān)注自身車輛的狀態(tài)11、在人工智能的音樂創(chuàng)作領(lǐng)域,計算機(jī)可以生成音樂作品。假設(shè)我們要利用人工智能創(chuàng)作一首流行歌曲,以下關(guān)于人工智能音樂創(chuàng)作的描述,哪一項是不正確的?()A.可以模仿特定音樂風(fēng)格和作曲家的特點B.能夠完全替代人類音樂家的創(chuàng)作靈感C.需要大量的音樂數(shù)據(jù)進(jìn)行訓(xùn)練D.生成的音樂可能缺乏情感和藝術(shù)表達(dá)12、當(dāng)利用人工智能進(jìn)行音樂創(chuàng)作,生成具有創(chuàng)新性和藝術(shù)價值的音樂作品,以下哪種方法和技術(shù)可能會被運用?()A.基于模板的生成B.基于風(fēng)格遷移C.基于生成模型D.以上都是13、在人工智能的語音合成任務(wù)中,要生成自然流暢且富有情感的語音。假設(shè)需要模擬不同人的聲音特點和情感表達(dá),以下哪種技術(shù)或方法是關(guān)鍵的?()A.基于深度學(xué)習(xí)的語音合成模型,學(xué)習(xí)語音特征B.使用固定的語音模板,進(jìn)行簡單組合C.隨機(jī)生成語音的音調(diào)和語速D.不考慮情感因素,只生成清晰的語音14、假設(shè)要構(gòu)建一個能夠自主學(xué)習(xí)并改進(jìn)其性能的人工智能圖像識別系統(tǒng),用于識別不同種類的動物。在訓(xùn)練過程中,需要處理大量的圖像數(shù)據(jù),以下哪種機(jī)器學(xué)習(xí)算法可能最為適合?()A.決策樹B.支持向量機(jī)C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)D.樸素貝葉斯15、在深度學(xué)習(xí)中,“批量歸一化(BatchNormalization)”的主要作用是?()A.加速訓(xùn)練B.防止過擬合C.提高模型精度D.以上都是二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述人工智能在社會發(fā)展倫理和道德框架構(gòu)建中的作用。2、(本題5分)解釋人工智能在全球治理和國際關(guān)系中的影響。3、(本題5分)解釋圖像生成的技術(shù)和應(yīng)用。三、操作題(本大題共5個小題,共25分)1、(本題5分)使用Python的OpenCV庫,實現(xiàn)對視頻中的行人姿態(tài)估計和動作分類,例如區(qū)分站立、坐下、行走等動作。2、(本題5分)通過強(qiáng)化學(xué)習(xí)讓一個智能體在模擬的交通環(huán)境中學(xué)會遵守交通規(guī)則并安全行駛。3、(本題5分)使用Python中的PyTorch框架,構(gòu)建一個基于多頭自注意力機(jī)制的文本分類模型,處理長文本數(shù)據(jù)。4、(本題5分)使用Python中的OpenCV庫,實現(xiàn)對視頻中的植物生長監(jiān)測和分析,例如測量植物的高度、葉片面積等。5、(本題5分)利用Python的TensorFlow框架,構(gòu)建一個基于注意力機(jī)制的Transformer模型,對機(jī)器翻譯任務(wù)進(jìn)行處理。使用大規(guī)模的平行語料庫進(jìn)行訓(xùn)練,評估模型在不同語言對之間的翻譯質(zhì)量。四、案例分析題(本大

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論