版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆安徽省黌學(xué)高級中學(xué)高三考前熱身數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.()A. B. C. D.2.已知復(fù)數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.3.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()4.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.5.把滿足條件(1),,(2),,使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個數(shù)為()①②③④⑤A.1個 B.2個 C.3個 D.4個6.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.127.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.8.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數(shù)列,則的離心率為()A. B. C. D.9.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.010.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i11.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.12.已知向量,且,則m=()A.?8 B.?6C.6 D.8二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,所有的奇數(shù)次冪項的系數(shù)和為-64,則實數(shù)的值為__________.14.在平面直角坐標(biāo)系中,點的坐標(biāo)為,點是直線:上位于第一象限內(nèi)的一點.已知以為直徑的圓被直線所截得的弦長為,則點的坐標(biāo)__________.15.已知數(shù)列滿足對任意,若,則數(shù)列的通項公式________.16.各項均為正數(shù)的等比數(shù)列中,為其前項和,若,且,則公比的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為;(1)求直線的直角坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交點分別為,,點,求的值.18.(12分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.19.(12分)已知函數(shù),.(1)當(dāng)時,判斷是否是函數(shù)的極值點,并說明理由;(2)當(dāng)時,不等式恒成立,求整數(shù)的最小值.20.(12分)在世界讀書日期間,某地區(qū)調(diào)查組對居民閱讀情況進(jìn)行了調(diào)查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030不經(jīng)常閱讀合計200(2)從該地區(qū)城鎮(zhèn)居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)中,內(nèi)角的對邊分別為,.(1)求的大小;(2)若,且為的重心,且,求的面積.22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)設(shè)點,若直線與曲線相交于、兩點,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
分子分母同乘,即根據(jù)復(fù)數(shù)的除法法則求解即可.【詳解】解:,故選:A【點睛】本題考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.2、A【解析】
利用復(fù)數(shù)的乘法、除法運算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復(fù)數(shù)的四則運算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.3、D【解析】
由題意利用兩個向量坐標(biāo)形式的運算法則,兩個向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標(biāo)對應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標(biāo)對應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標(biāo)形式的運算,兩個向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.4、B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.5、B【解析】
滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點對稱,分別對所給函數(shù)進(jìn)行驗證.【詳解】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.【點睛】本題考查新定義函數(shù)的問題,涉及到函數(shù)的性質(zhì),考查學(xué)生邏輯推理與分析能力,是一道容易題.6、D【解析】
推導(dǎo)出,且,,,設(shè)中點為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點為,則平面,∴,∴,解得.故選:D【點睛】本題考查三視圖和錐體的體積計算公式的應(yīng)用,屬于中檔題.7、B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計算能力,屬于中檔題8、C【解析】
根據(jù)等差數(shù)列的性質(zhì)設(shè)出,,,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關(guān)系式,化簡后求得離心率.【詳解】由已知,,成等差數(shù)列,設(shè),,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.9、B【解析】
根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質(zhì)是到達(dá)哪個點以及計算白螞蟻爬完2020段后實質(zhì)是到達(dá)哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.10、B【解析】
利用復(fù)數(shù)的運算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點睛】本題考查了復(fù)數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.11、A【解析】
作出不等式組表示的可行域,然后對四個選項一一分析可得結(jié)果.【詳解】作出可行域如圖所示,當(dāng)時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點睛】此題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.12、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標(biāo)運算,考查向量垂直的坐標(biāo)運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、3或-1【解析】
設(shè),分別令、,兩式相減即可得,即可得解.【詳解】設(shè),令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.【點睛】本題考查了二項式定理的應(yīng)用,考查了運算能力,屬于中檔題.14、【解析】
依題意畫圖,設(shè),根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進(jìn)而得出點坐標(biāo).【詳解】解:依題意畫圖,設(shè)以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則,則為點到直線:的距離.所以,則.又因為點在直線:上,設(shè),則.解得,則.故答案為:【點睛】本題考查了直線與圓的位置關(guān)系,考查了兩點間的距離公式,點到直線的距離公式,是基礎(chǔ)題.15、【解析】
由可得,利用等比數(shù)列的通項公式可得,再利用累加法求和與等比數(shù)列的求和公式,即可得出結(jié)論.【詳解】由,得,數(shù)列是等比數(shù)列,首項為2,公比為2,,,,,滿足上式,.故答案為:.【點睛】本題考查數(shù)列的通項公式,遞推公式轉(zhuǎn)化為等比數(shù)列是解題的關(guān)鍵,利用累加法求通項公式,屬于中檔題.16、【解析】
將已知由前n項和定義整理為,再由等比數(shù)列性質(zhì)求得公比,最后由數(shù)列各項均為正數(shù),舍根得解.【詳解】因為即又等比數(shù)列各項均為正數(shù),故故答案為:【點睛】本題考查在等比數(shù)列中由前n項和關(guān)系求公比,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數(shù)可得直線的直角坐標(biāo)系方程,由可得曲線的直角坐標(biāo)方程;(2)將(為參數(shù))代入曲線的方程得:,,利用韋達(dá)定理求解即可.試題解析:(1),曲線,(2)將(為參數(shù))代入曲線的方程得:.所以.所以.18、(1)(2)不存在;詳見解析【解析】
(1)設(shè),,,通過,即為的中點,轉(zhuǎn)化求解,點的軌跡的方程.(2)設(shè)直線的方程為,先根據(jù),可得,①,再根據(jù)韋達(dá)定理,點在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決【詳解】(1)設(shè),,則,,由題意知,所以為中點,由中點坐標(biāo)公式得,即,又點在圓:上,故滿足,得.曲線的方程.(2)由題意知直線的斜率存在且不為零,設(shè)直線的方程為,因為,故,即①,聯(lián)立,消去得:,設(shè),,,,,因為四邊形為平行四邊形,故,點在橢圓上,故,整理得②,將①代入②,得,該方程無解,故這樣的直線不存在.【點睛】本題考查點的軌跡方程的求法、滿足條件的點是否存在的判斷與直線方程的求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.19、(1)是函數(shù)的極大值點,理由詳見解析;(2)1.【解析】
(1)將直接代入,對求導(dǎo)得,由于函數(shù)單調(diào)性不好判斷,故而構(gòu)造函數(shù),繼續(xù)求導(dǎo),判斷導(dǎo)函數(shù)在左右兩邊的正負(fù)情況,最后得出,是函數(shù)的極大值點;(2)利用題目已有條件得,再證明時,不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當(dāng)時,.令,則當(dāng)時,.即在內(nèi)為減函數(shù),且∴當(dāng)時,;當(dāng)時,.∴在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).綜上,是函數(shù)的極大值點.(2)由題意,得,即.現(xiàn)證明當(dāng)時,不等式成立,即.即證令則∴當(dāng)時,;當(dāng)時,.∴在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,的最大值為.∴當(dāng)時,.即當(dāng)時,不等式成立.綜上,整數(shù)的最小值為.【點睛】本題考查學(xué)生利用導(dǎo)數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調(diào)性,由此來求解函數(shù)中的參數(shù)的取值范圍,對學(xué)生要求較高,然后需要學(xué)生能構(gòu)造新函數(shù)處理恒成立問題,為難題20、(1)見解析,有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)【解析】
(1)根據(jù)題意填寫列聯(lián)表,利用公式求出,比較與6.635的大小得結(jié)論;(2)由樣本數(shù)據(jù)可得經(jīng)常閱讀的人的概率是,則,根據(jù)二項分布的期望公式計算可得;【詳解】解:(1)由題意可得:城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030130不經(jīng)常閱讀403070合計14060200則,所以有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)根據(jù)樣本估計,從該地區(qū)城鎮(zhèn)居民中隨機抽取1人,抽到經(jīng)常閱讀的人的概率是,且,所以隨機變量的期望為.【點睛】本題考查獨立性檢驗的應(yīng)用,考查離散型隨機變量的數(shù)學(xué)期望的計算,考查運算求解能力,屬于基礎(chǔ)題.21、(1);(2)【解析】
(1)利用正弦定理,轉(zhuǎn)化為,分析運算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度養(yǎng)老院護理服務(wù)與設(shè)施租賃合同3篇
- 2025年度土地流轉(zhuǎn)與農(nóng)業(yè)廢棄物綜合利用合同3篇
- 2025年度綠色能源補貼合同范本2篇
- 2025年度汽車4S店店面租賃及品牌運營合同3篇
- 二零二四醫(yī)院護士勞動合同樣本:醫(yī)院護理團隊人員勞動合同3篇
- 2025年度債務(wù)重組與財產(chǎn)分配稅務(wù)籌劃合同3篇
- 二零二五版高端別墅租賃管理服務(wù)合同2篇
- 2024知名品牌授權(quán)使用及銷售代理合同
- 2024食堂人員安全生產(chǎn)責(zé)任與聘用合同3篇
- 2024貼磚勞務(wù)分包合同施工質(zhì)量監(jiān)督協(xié)議3篇
- 2025年湖北武漢工程大學(xué)招聘6人歷年高頻重點提升(共500題)附帶答案詳解
- 【數(shù) 學(xué)】2024-2025學(xué)年北師大版數(shù)學(xué)七年級上冊期末能力提升卷
- GB/T 26846-2024電動自行車用電動機和控制器的引出線及接插件
- 遼寧省沈陽市皇姑區(qū)2024-2025學(xué)年九年級上學(xué)期期末考試語文試題(含答案)
- 2024年國家工作人員學(xué)法用法考試題庫及參考答案
- 妊娠咳嗽的臨床特征
- 國家公務(wù)員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術(shù)》課件 第6講 阻燃纖維及織物
- 2024年金融理財-擔(dān)保公司考試近5年真題附答案
- 泰山產(chǎn)業(yè)領(lǐng)軍人才申報書
- 高中語文古代文學(xué)課件:先秦文學(xué)
評論
0/150
提交評論