版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省石家莊康福外國(guó)語(yǔ)學(xué)校2025屆高考數(shù)學(xué)三模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合A={x|x<1},B={x|},則A. B.C. D.2.設(shè)、,數(shù)列滿足,,,則()A.對(duì)于任意,都存在實(shí)數(shù),使得恒成立B.對(duì)于任意,都存在實(shí)數(shù),使得恒成立C.對(duì)于任意,都存在實(shí)數(shù),使得恒成立D.對(duì)于任意,都存在實(shí)數(shù),使得恒成立3.給出下列三個(gè)命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.其中假命題的個(gè)數(shù)是()A.0 B.1 C.2 D.34.△ABC的內(nèi)角A,B,C的對(duì)邊分別為,已知,則為()A. B. C.或 D.或5.已知拋物線C:,過(guò)焦點(diǎn)F的直線l與拋物線C交于A,B兩點(diǎn)(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.36.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.7.在平行六面體中,M為與的交點(diǎn),若,,則與相等的向量是()A. B. C. D.8.已知,若對(duì)任意,關(guān)于x的不等式(e為自然對(duì)數(shù)的底數(shù))至少有2個(gè)正整數(shù)解,則實(shí)數(shù)a的取值范圍是()A. B. C. D.9.已知拋物線的焦點(diǎn)為,過(guò)焦點(diǎn)的直線與拋物線分別交于、兩點(diǎn),與軸的正半軸交于點(diǎn),與準(zhǔn)線交于點(diǎn),且,則()A. B.2 C. D.310.的展開(kāi)式中的系數(shù)為()A. B. C. D.11.一只螞蟻在邊長(zhǎng)為的正三角形區(qū)域內(nèi)隨機(jī)爬行,則在離三個(gè)頂點(diǎn)距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.12.已知復(fù)數(shù),則的虛部為()A.-1 B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.一個(gè)袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),從中任意摸取3個(gè)小球,每個(gè)小球被取出的可能性相等,則取出的3個(gè)小球中數(shù)字最大的為4的概率是__.14.已知函數(shù)在上單調(diào)遞增,則實(shí)數(shù)a值范圍為_(kāi)________.15.已知,為正實(shí)數(shù),且,則的最小值為_(kāi)_______________.16.已知數(shù)列的前項(xiàng)滿足,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比到軸的距離多.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè),是軌跡在上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線和的傾斜角分別為和,當(dāng),變化且時(shí),證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).點(diǎn)在曲線上,點(diǎn)滿足.(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求動(dòng)點(diǎn)的軌跡的極坐標(biāo)方程;(2)點(diǎn),分別是曲線上第一象限,第二象限上兩點(diǎn),且滿足,求的值.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的解集包含,求的取值范圍.20.(12分)設(shè)函數(shù),,(Ⅰ)求曲線在點(diǎn)(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.21.(12分)在平面直角坐標(biāo)系中,直線與拋物線:交于,兩點(diǎn),且當(dāng)時(shí),.(1)求的值;(2)設(shè)線段的中點(diǎn)為,拋物線在點(diǎn)處的切線與的準(zhǔn)線交于點(diǎn),證明:軸.22.(10分)已知函數(shù)(1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;(2)求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】∵集合∴∵集合∴,故選A2、D【解析】
取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進(jìn)而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項(xiàng);由蛛網(wǎng)圖可知,存在兩個(gè)不動(dòng)點(diǎn),且,,因?yàn)楫?dāng)時(shí),數(shù)列單調(diào)遞增,則;當(dāng)時(shí),數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡(jiǎn)得且.故選:D.【點(diǎn)睛】本題考查遞推數(shù)列的綜合運(yùn)用,考查邏輯推理能力,屬于難題.3、C【解析】
結(jié)合不等式、三角函數(shù)的性質(zhì),對(duì)三個(gè)命題逐個(gè)分析并判斷其真假,即可選出答案.【詳解】對(duì)于命題①,因?yàn)?所以“”是真命題,故其否定是假命題,即①是假命題;對(duì)于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對(duì)于命題③,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點(diǎn)睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.4、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點(diǎn)睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.5、B【解析】
設(shè)直線的方程為代入拋物線方程,利用韋達(dá)定理可得,,由可知所以可得代入化簡(jiǎn)求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因?yàn)椋?,得,所以,即,,所?故選:B.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理及向量的坐標(biāo)之間的關(guān)系,考查計(jì)算能力,屬于中檔題.6、D【解析】
把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的公式計(jì)算得答案.【詳解】解:,則.故選:D.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.7、D【解析】
根據(jù)空間向量的線性運(yùn)算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運(yùn)算可知因?yàn)?,則即,故選:D.【點(diǎn)睛】本題考查了空間向量的線性運(yùn)算,用基底表示向量,屬于基礎(chǔ)題.8、B【解析】
構(gòu)造函數(shù)(),求導(dǎo)可得在上單調(diào)遞增,則,問(wèn)題轉(zhuǎn)化為,即至少有2個(gè)正整數(shù)解,構(gòu)造函數(shù),,通過(guò)導(dǎo)數(shù)研究單調(diào)性,由可知,要使得至少有2個(gè)正整數(shù)解,只需即可,代入可求得結(jié)果.【詳解】構(gòu)造函數(shù)(),則(),所以在上單調(diào)遞增,所以,故問(wèn)題轉(zhuǎn)化為至少存在兩個(gè)正整數(shù)x,使得成立,設(shè),,則,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞增.,整理得.故選:B.【點(diǎn)睛】本題考查導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,考查不等式成立問(wèn)題中求解參數(shù)問(wèn)題,考查學(xué)生分析問(wèn)題的能力和邏輯推理能力,難度較難.9、B【解析】
過(guò)點(diǎn)作準(zhǔn)線的垂線,垂足為,與軸交于點(diǎn),由和拋物線的定義可求得,利用拋物線的性質(zhì)可構(gòu)造方程求得,進(jìn)而求得結(jié)果.【詳解】過(guò)點(diǎn)作準(zhǔn)線的垂線,垂足為,與軸交于點(diǎn),由拋物線解析式知:,準(zhǔn)線方程為.,,,,由拋物線定義知:,,,.由拋物線性質(zhì)得:,解得:,.故選:.【點(diǎn)睛】本題考查拋物線定義與幾何性質(zhì)的應(yīng)用,關(guān)鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.10、C【解析】由題意,根據(jù)二項(xiàng)式定理展開(kāi)式的通項(xiàng)公式,得展開(kāi)式的通項(xiàng)為,則展開(kāi)式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識(shí)與技能,屬于中低檔題,也是常考知識(shí)點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問(wèn)題,通過(guò)確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問(wèn)題可得解.11、A【解析】
求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點(diǎn)到頂點(diǎn)、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點(diǎn)、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點(diǎn)到三個(gè)頂點(diǎn)、、的距離都大于的概率是.故選:A.【點(diǎn)睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.12、A【解析】
分子分母同乘分母的共軛復(fù)數(shù)即可.【詳解】,故的虛部為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生運(yùn)算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題,得滿足題目要求的情況有,①有一個(gè)數(shù)字4,另外兩個(gè)數(shù)字從1,2,3里面選和②有兩個(gè)數(shù)字4,另外一個(gè)數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個(gè)數(shù)字4,另外兩個(gè)數(shù)字從1,2,3里面選,一共有種情況;②有兩個(gè)數(shù)字4,另外一個(gè)數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個(gè)小球,有種情況,所以取出的3個(gè)小球中數(shù)字最大的為4的概率.故答案為:【點(diǎn)睛】本題主要考查古典概型與組合的綜合問(wèn)題,考查學(xué)生分析問(wèn)題和解決問(wèn)題的能力.14、【解析】
由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問(wèn)題等價(jià)于在時(shí)恒成立,∴,解得.故答案為:.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,解題關(guān)鍵是問(wèn)題轉(zhuǎn)化為恒成立,利用換元法和二次函數(shù)的性質(zhì)易求解.15、【解析】
由,為正實(shí)數(shù),且,可知,于是,可得,再利用基本不等式即可得出結(jié)果.【詳解】解:,為正實(shí)數(shù),且,可知,,.當(dāng)且僅當(dāng)時(shí)取等號(hào).的最小值為.故答案為:.【點(diǎn)睛】本題考查了基本不等式的性質(zhì)應(yīng)用,恰當(dāng)變形是解題的關(guān)鍵,屬于中檔題.16、【解析】
由已知寫出用代替的等式,兩式相減后可得結(jié)論,同時(shí)要注意的求解方法.【詳解】∵①,∴時(shí),②,①-②得,∴,又,∴().故答案為:.【點(diǎn)睛】本題考查求數(shù)列通項(xiàng)公式,由已知條件.類比已知求的解題方法求解.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或;(2)證明見(jiàn)解析,定點(diǎn)【解析】
(1)設(shè),由題意可知,對(duì)的正負(fù)分情況討論,從而求得動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)其方程為,與拋物線方程聯(lián)立,利用韋達(dá)定理得到,所以,所以直線的方程可表示為,即,所以直線恒過(guò)定點(diǎn).【詳解】(1)設(shè),動(dòng)點(diǎn)到定點(diǎn)的距離比到軸的距離多,,時(shí),解得,時(shí),解得.動(dòng)點(diǎn)的軌跡的方程為或(2)證明:如圖,設(shè),,由題意得(否則)且,所以直線的斜率存在,設(shè)其方程為,將與聯(lián)立消去,得,由韋達(dá)定理知,,①顯然,,,,將①式代入上式整理化簡(jiǎn)可得:,所以,此時(shí),直線的方程可表示為,即,所以直線恒過(guò)定點(diǎn).【點(diǎn)睛】本題主要考查了動(dòng)點(diǎn)軌跡,考查了直線與拋物線的綜合,是中檔題.18、(1)();(2)【解析】
(1)由已知,曲線的參數(shù)方程消去t后,要注意x的范圍,再利用普通方程與極坐標(biāo)方程的互化公式運(yùn)算即可;(2)設(shè),,由(1)可得,,相加即可得到證明.【詳解】(1),∵,∴,∴,由題可知:,:().(2)因?yàn)?,設(shè),,則,,.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,考查學(xué)生的計(jì)算能力,是一道容易題.19、(1);(2).【解析】
(1)對(duì)范圍分類整理得:,分類解不等式即可.(2)利用已知轉(zhuǎn)化為“當(dāng)時(shí),”恒成立,利用絕對(duì)值不等式的性質(zhì)可得:,問(wèn)題得解.【詳解】當(dāng)時(shí),,當(dāng)時(shí),由得,解得;當(dāng)時(shí),無(wú)解;當(dāng)時(shí),由得,解得,所以的解集為(2)的解集包含等價(jià)于在上恒成立,當(dāng)時(shí),等價(jià)于恒成立,而,∴,故滿足條件的的取值范圍是【點(diǎn)睛】本題主要考查了含絕對(duì)值不等式的解法,還考查了轉(zhuǎn)化能力及絕對(duì)值不等式的性質(zhì),考查計(jì)算能力,屬于中檔題.20、(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結(jié)果,注意復(fù)合函數(shù)求導(dǎo)法則,接著應(yīng)用點(diǎn)斜式寫出直線的方程;(2)先將函數(shù)解析式求出,之后借助于導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得函數(shù)在相應(yīng)區(qū)間上的最值.詳解:(Ⅰ)當(dāng),.,當(dāng),,所以切線方程為.(Ⅱ),,因?yàn)?,所?令,,則在單調(diào)遞減,因?yàn)?,所以在上增,在單調(diào)遞增.,,因?yàn)?,所以在區(qū)間上的值域?yàn)?點(diǎn)睛:該題考查的是有關(guān)應(yīng)用導(dǎo)數(shù)研究函數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,曲線在某個(gè)點(diǎn)處的切線方程的求法,復(fù)合函數(shù)求導(dǎo),函數(shù)在給定區(qū)間上的最值等,在解題的過(guò)程中,需要對(duì)公式的正確使用.21、(1)1;(2)見(jiàn)解析【解析】
(1)設(shè),,聯(lián)立直線和拋物線方程,得,寫出韋達(dá)定理,根據(jù)弦長(zhǎng)公式,即可求出;(2)由,得,根據(jù)導(dǎo)數(shù)的幾何意義,求出拋物線在點(diǎn)點(diǎn)處切線方程,進(jìn)而求出,即可證出軸.【詳解】解:(1)設(shè),,將直線代入中整理得:,∴,,∴,解得:.(2)同(1)假設(shè),,由,得,從而拋物線在點(diǎn)點(diǎn)處的切線方程為,即,令,得,由(1)知,從而,這表明軸.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,涉及聯(lián)立方程組、韋達(dá)定理、弦長(zhǎng)公式以及利用導(dǎo)數(shù)求切線方程
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 煤堆棚消防知識(shí)培訓(xùn)課件
- 2024版招投標(biāo)代理合同
- 浙江科技學(xué)院《科研思路與方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 中華女子學(xué)院《臨床免疫學(xué)檢驗(yàn)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024微股東眾籌入股區(qū)塊鏈技術(shù)應(yīng)用入股協(xié)議3篇
- 金融領(lǐng)域人才流失分析
- 理財(cái)投資行業(yè)前臺(tái)接待工作總結(jié)
- 汽車設(shè)計(jì)師設(shè)計(jì)汽車外觀優(yōu)化車身結(jié)構(gòu)
- 2025年特色餐廳特色食材采購(gòu)與加工合作協(xié)議3篇
- 生物學(xué)入門講座模板
- 小學(xué)2022 年國(guó)家義務(wù)教育質(zhì)量監(jiān)測(cè)工作方案
- 化學(xué)品安全技術(shù)說(shuō)明(膠水)
- 醫(yī)院后勤保障管理組織架構(gòu)圖
- 南寧市中小學(xué)學(xué)籍管理系統(tǒng)數(shù)據(jù)采集表
- 中空吹塑成型課件
- 領(lǐng)先閱讀X計(jì)劃第四級(jí)Bug Hunt 教學(xué)設(shè)計(jì)
- 《詩(shī)詞格律》word版
- 預(yù)算第二十三講
- 高中體育與健康人教版全一冊(cè) 6.2田徑—短跑 課件(共11張PPT)
- 蔬菜供貨服務(wù)保障方案
- WordA4信紙(A4橫條直接打印版)
評(píng)論
0/150
提交評(píng)論