




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)襄陽(yáng)汽車(chē)職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)前沿》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)正在比較不同的聚類(lèi)算法,用于對(duì)一組沒(méi)有標(biāo)簽的客戶數(shù)據(jù)進(jìn)行分組。如果數(shù)據(jù)分布不規(guī)則且存在不同密度的簇,以下哪種聚類(lèi)算法可能更適合?()A.K-Means算法B.層次聚類(lèi)算法C.密度聚類(lèi)算法(DBSCAN)D.均值漂移聚類(lèi)算法2、在機(jī)器學(xué)習(xí)中,降維是一種常見(jiàn)的操作,用于減少特征的數(shù)量。以下哪種降維方法是基于線性變換的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-SNED.以上都是3、某研究團(tuán)隊(duì)正在開(kāi)發(fā)一個(gè)用于預(yù)測(cè)股票價(jià)格的機(jī)器學(xué)習(xí)模型,需要考慮市場(chǎng)的動(dòng)態(tài)性和不確定性。以下哪種模型可能更適合處理這種復(fù)雜的時(shí)間序列數(shù)據(jù)?()A.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)結(jié)合注意力機(jī)制B.門(mén)控循環(huán)單元(GRU)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)的組合C.隨機(jī)森林與自回歸移動(dòng)平均模型(ARMA)的融合D.以上模型都有可能4、假設(shè)我們有一個(gè)時(shí)間序列數(shù)據(jù),想要預(yù)測(cè)未來(lái)的值。以下哪種機(jī)器學(xué)習(xí)算法可能不太適合()A.線性回歸B.長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)C.隨機(jī)森林D.自回歸移動(dòng)平均模型(ARMA)5、考慮一個(gè)回歸問(wèn)題,我們要預(yù)測(cè)房?jī)r(jià)。數(shù)據(jù)集包含了房屋的面積、房間數(shù)量、地理位置等特征以及對(duì)應(yīng)的房?jī)r(jià)。在選擇評(píng)估指標(biāo)來(lái)衡量模型的性能時(shí),需要綜合考慮模型的準(zhǔn)確性和誤差的性質(zhì)。以下哪個(gè)評(píng)估指標(biāo)不僅考慮了預(yù)測(cè)值與真實(shí)值的偏差,還考慮了偏差的平方?()A.平均絕對(duì)誤差(MAE)B.均方誤差(MSE)C.決定系數(shù)(R2)D.準(zhǔn)確率(Accuracy)6、在處理不平衡數(shù)據(jù)集時(shí),以下關(guān)于解決數(shù)據(jù)不平衡問(wèn)題的方法,哪一項(xiàng)是不正確的?()A.過(guò)采樣方法通過(guò)增加少數(shù)類(lèi)樣本的數(shù)量來(lái)平衡數(shù)據(jù)集B.欠采樣方法通過(guò)減少多數(shù)類(lèi)樣本的數(shù)量來(lái)平衡數(shù)據(jù)集C.合成少數(shù)類(lèi)過(guò)采樣技術(shù)(SMOTE)通過(guò)合成新的少數(shù)類(lèi)樣本來(lái)平衡數(shù)據(jù)集D.數(shù)據(jù)不平衡對(duì)模型性能沒(méi)有影響,不需要采取任何措施來(lái)處理7、機(jī)器學(xué)習(xí)中,批量歸一化(BatchNormalization)的主要作用是()A.加快訓(xùn)練速度B.防止過(guò)擬合C.提高模型精度D.以上都是8、在機(jī)器學(xué)習(xí)中,交叉驗(yàn)證是一種常用的評(píng)估模型性能和選擇超參數(shù)的方法。假設(shè)我們正在使用K折交叉驗(yàn)證來(lái)評(píng)估一個(gè)分類(lèi)模型。以下關(guān)于交叉驗(yàn)證的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.將數(shù)據(jù)集隨機(jī)分成K個(gè)大小相等的子集,依次選擇其中一個(gè)子集作為測(cè)試集,其余子集作為訓(xùn)練集B.通過(guò)計(jì)算K次實(shí)驗(yàn)的平均準(zhǔn)確率等指標(biāo)來(lái)評(píng)估模型的性能C.可以在交叉驗(yàn)證過(guò)程中同時(shí)調(diào)整多個(gè)超參數(shù),找到最優(yōu)的超參數(shù)組合D.交叉驗(yàn)證只適用于小數(shù)據(jù)集,對(duì)于大數(shù)據(jù)集計(jì)算成本過(guò)高,不適用9、在構(gòu)建一個(gè)機(jī)器學(xué)習(xí)模型時(shí),如果數(shù)據(jù)中存在噪聲,以下哪種方法可以幫助減少噪聲的影響()A.增加正則化項(xiàng)B.減少訓(xùn)練輪數(shù)C.增加模型的復(fù)雜度D.以上方法都不行10、假設(shè)正在開(kāi)發(fā)一個(gè)用于推薦系統(tǒng)的深度學(xué)習(xí)模型,需要考慮用戶的短期興趣和長(zhǎng)期興趣。以下哪種模型結(jié)構(gòu)可以同時(shí)捕捉這兩種興趣?()A.注意力機(jī)制與循環(huán)神經(jīng)網(wǎng)絡(luò)的結(jié)合B.多層感知機(jī)與卷積神經(jīng)網(wǎng)絡(luò)的組合C.生成對(duì)抗網(wǎng)絡(luò)與自編碼器的融合D.以上模型都有可能11、在一個(gè)推薦系統(tǒng)中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機(jī)推薦,增加推薦結(jié)果的不確定性,但可能降低相關(guān)性B.基于內(nèi)容的多樣性優(yōu)化,選擇不同類(lèi)型的物品進(jìn)行推薦,但可能忽略用戶偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結(jié)合使用,并根據(jù)用戶反饋動(dòng)態(tài)調(diào)整12、在機(jī)器學(xué)習(xí)中,特征選擇是一項(xiàng)重要的任務(wù),旨在從眾多的原始特征中選擇出對(duì)模型性能有顯著影響的特征。假設(shè)我們有一個(gè)包含大量特征的數(shù)據(jù)集,在進(jìn)行特征選擇時(shí),以下哪種方法通常不被采用?()A.基于相關(guān)性分析,選擇與目標(biāo)變量高度相關(guān)的特征B.隨機(jī)選擇一部分特征,進(jìn)行試驗(yàn)和比較C.使用遞歸特征消除(RFE)方法,逐步篩選特征D.基于領(lǐng)域知識(shí)和經(jīng)驗(yàn),手動(dòng)選擇特征13、在進(jìn)行模型壓縮時(shí),以下關(guān)于模型壓縮方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.剪枝是指刪除模型中不重要的權(quán)重或神經(jīng)元,減少模型的參數(shù)量B.量化是將模型的權(quán)重進(jìn)行低精度表示,如從32位浮點(diǎn)數(shù)轉(zhuǎn)換為8位整數(shù)C.知識(shí)蒸餾是將復(fù)雜模型的知識(shí)轉(zhuǎn)移到一個(gè)較小的模型中,實(shí)現(xiàn)模型壓縮D.模型壓縮會(huì)導(dǎo)致模型性能?chē)?yán)重下降,因此在實(shí)際應(yīng)用中應(yīng)盡量避免使用14、在使用樸素貝葉斯算法進(jìn)行分類(lèi)時(shí),以下關(guān)于樸素貝葉斯的假設(shè)和特點(diǎn),哪一項(xiàng)是不正確的?()A.假設(shè)特征之間相互獨(dú)立,簡(jiǎn)化了概率計(jì)算B.對(duì)于連續(xù)型特征,通常需要先進(jìn)行離散化處理C.樸素貝葉斯算法對(duì)輸入數(shù)據(jù)的分布沒(méi)有要求,適用于各種類(lèi)型的數(shù)據(jù)D.樸素貝葉斯算法在處理高維度數(shù)據(jù)時(shí)性能較差,容易出現(xiàn)過(guò)擬合15、假設(shè)我們要使用機(jī)器學(xué)習(xí)算法來(lái)預(yù)測(cè)股票價(jià)格的走勢(shì)。以下哪種數(shù)據(jù)特征可能對(duì)預(yù)測(cè)結(jié)果幫助較?。ǎ〢.公司的財(cái)務(wù)報(bào)表數(shù)據(jù)B.社交媒體上關(guān)于該股票的討論熱度C.股票代碼D.宏觀經(jīng)濟(jì)指標(biāo)16、在評(píng)估機(jī)器學(xué)習(xí)模型的性能時(shí),通常會(huì)使用多種指標(biāo)。假設(shè)我們有一個(gè)二分類(lèi)模型,用于預(yù)測(cè)患者是否患有某種疾病。以下關(guān)于模型評(píng)估指標(biāo)的描述,哪一項(xiàng)是不正確的?()A.準(zhǔn)確率是正確分類(lèi)的樣本數(shù)占總樣本數(shù)的比例,但在類(lèi)別不平衡的情況下可能不準(zhǔn)確B.召回率是被正確預(yù)測(cè)為正例的樣本數(shù)占實(shí)際正例樣本數(shù)的比例C.F1分?jǐn)?shù)是準(zhǔn)確率和召回率的調(diào)和平均值,綜合考慮了模型的準(zhǔn)確性和全面性D.均方誤差(MSE)常用于二分類(lèi)問(wèn)題的模型評(píng)估,值越小表示模型性能越好17、假設(shè)正在研究一個(gè)自然語(yǔ)言處理任務(wù),需要對(duì)句子進(jìn)行語(yǔ)義理解。以下哪種深度學(xué)習(xí)模型在捕捉句子的長(zhǎng)期依賴關(guān)系方面表現(xiàn)較好?()A.雙向長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(BiLSTM)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)D.以上模型都有其特點(diǎn)18、在進(jìn)行機(jī)器學(xué)習(xí)模型的訓(xùn)練時(shí),過(guò)擬合是一個(gè)常見(jiàn)的問(wèn)題。假設(shè)我們正在訓(xùn)練一個(gè)決策樹(shù)模型來(lái)預(yù)測(cè)客戶是否會(huì)購(gòu)買(mǎi)某種產(chǎn)品,給定了客戶的個(gè)人信息和購(gòu)買(mǎi)歷史等數(shù)據(jù)。以下關(guān)于過(guò)擬合的描述和解決方法,哪一項(xiàng)是錯(cuò)誤的?()A.過(guò)擬合表現(xiàn)為模型在訓(xùn)練集上表現(xiàn)很好,但在測(cè)試集上表現(xiàn)不佳B.增加訓(xùn)練數(shù)據(jù)的數(shù)量可以有效地減少過(guò)擬合的發(fā)生C.對(duì)決策樹(shù)進(jìn)行剪枝操作,即刪除一些不重要的分支,可以防止過(guò)擬合D.降低模型的復(fù)雜度,例如減少?zèng)Q策樹(shù)的深度,會(huì)導(dǎo)致模型的擬合能力下降,無(wú)法解決過(guò)擬合問(wèn)題19、當(dāng)使用樸素貝葉斯算法進(jìn)行分類(lèi)時(shí),假設(shè)特征之間相互獨(dú)立。但在實(shí)際數(shù)據(jù)中,如果特征之間存在一定的相關(guān)性,這會(huì)對(duì)算法的性能產(chǎn)生怎樣的影響()A.提高分類(lèi)準(zhǔn)確性B.降低分類(lèi)準(zhǔn)確性C.對(duì)性能沒(méi)有影響D.可能提高也可能降低準(zhǔn)確性,取決于數(shù)據(jù)20、在一個(gè)異常檢測(cè)的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點(diǎn)。以下哪種異常檢測(cè)算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點(diǎn),但對(duì)參數(shù)敏感B.一類(lèi)支持向量機(jī)(One-ClassSVM),適用于高維數(shù)據(jù),但對(duì)數(shù)據(jù)分布的假設(shè)較強(qiáng)C.基于聚類(lèi)的異常檢測(cè),將遠(yuǎn)離聚類(lèi)中心的點(diǎn)視為異常,但聚類(lèi)效果對(duì)結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)選擇合適的方法或進(jìn)行組合二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)中的集成學(xué)習(xí)方法。2、(本題5分)談?wù)劸植烤€性嵌入(LLE)在降維中的應(yīng)用。3、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行滑坡預(yù)測(cè)。4、(本題5分)機(jī)器學(xué)習(xí)中梯度提升樹(shù)(GBDT)的特點(diǎn)是什么?5、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在電商中的客戶行為分析。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)通過(guò)主成分分析對(duì)音頻數(shù)據(jù)進(jìn)行降維。2、(本題5分)使用決策樹(shù)算法對(duì)用戶的健康狀況進(jìn)行評(píng)估。3、(本題5分)利用口腔正畸學(xué)數(shù)據(jù)設(shè)計(jì)正畸治療方案。4、(本題5分)通過(guò)神經(jīng)網(wǎng)絡(luò)模型對(duì)腦電圖(EEG)中的異常進(jìn)行檢測(cè)。5、(本題5分)運(yùn)用LSTM網(wǎng)絡(luò)對(duì)電商平臺(tái)的用戶流失率進(jìn)行預(yù)測(cè)。四、論述題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 便利店特許經(jīng)營(yíng)合同樣本
- 無(wú)障礙界面設(shè)計(jì)實(shí)踐-洞察闡釋
- 智能化質(zhì)量監(jiān)控與追溯系統(tǒng)-洞察闡釋
- 基于動(dòng)態(tài)時(shí)間warping的手寫(xiě)簽名識(shí)別-洞察闡釋
- 芯片技術(shù)驅(qū)動(dòng)的性能提升-洞察闡釋
- 藝術(shù)教育中的創(chuàng)新教學(xué)方法-洞察闡釋
- 空氣質(zhì)量變化與氣候變化的相互作用-洞察闡釋
- 市區(qū)街道房產(chǎn)出租協(xié)議書(shū)4篇
- 碎石機(jī)拆除合同2篇
- 出口合同-出口買(mǎi)方信貸貸款合同3篇
- 病例報(bào)告表(CRF)模板
- Q∕GDW 12158-2021 國(guó)家電網(wǎng)有限公司重大活動(dòng)電力安全保障工作規(guī)范
- 檔案管理基礎(chǔ)(第5章 檔案的保管)
- 鏈斗技術(shù)規(guī)范書(shū)
- 船舶應(yīng)急部署表及船員應(yīng)變卡
- 爾雅《尊重學(xué)術(shù)道德遵守學(xué)術(shù)規(guī)范》期末考試答案0001
- 關(guān)聯(lián)交易模板詳解
- 政治經(jīng)濟(jì)學(xué)計(jì)算題附答案
- 熱風(fēng)爐烘爐方案2014.
- 人教版數(shù)學(xué)四年級(jí)下冊(cè)7、8、9單元綜合測(cè)試卷
- 牛津譯林版新教材高中英語(yǔ)選擇性必修一全冊(cè)課文原文
評(píng)論
0/150
提交評(píng)論