版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省忻州一中等四校重點中學2025屆高考沖刺數學模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數的圖像向左平移個單位長度后,得到的圖像關于坐標原點對稱,則的最小值為()A. B. C. D.2.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內一點,則三棱錐的正視圖與側視圖的面積之和為()A.2 B.3 C.4 D.53.已知函數的圖像上有且僅有四個不同的關于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.4.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數為().A.432 B.576 C.696 D.9605.觀察下列各式:,,,,,,,,根據以上規(guī)律,則()A. B. C. D.6.已知,則()A. B. C. D.7.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側面積是()A.16 B.12 C.8 D.68.設,則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件9.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.10.點在曲線上,過作軸垂線,設與曲線交于點,,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數為()A.0 B.1 C.2 D.311.設雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.12.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B二、填空題:本題共4小題,每小題5分,共20分。13.實數,滿足,如果目標函數的最小值為,則的最小值為_______.14.在平面直角坐標系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點,則弦的長為_________15.某高校組織學生辯論賽,六位評委為選手成績打出分數的莖葉圖如圖所示,若去掉一個最高分,去掉一個最低分,則所剩數據的平均數與中位數的差為______.16.已知半徑為的圓周上有一定點,在圓周上等可能地任意取一點與點連接,則所得弦長介于與之間的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列,滿足.(1)求數列,的通項公式;(2)分別求數列,的前項和,.18.(12分)某商場以分期付款方式銷售某種商品,根據以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(?。┣蟮姆植剂校唬áⅲ┤簦蟮臄祵W期望的最大值.19.(12分)某公司生產的某種產品,如果年返修率不超過千分之一,則其生產部門當年考核優(yōu)秀,現(xiàn)獲得該公司年的相關數據如下表所示:年份20112012201320142015201620172018年生產臺數(萬臺)2345671011該產品的年利潤(百萬元)2.12.753.53.2534.966.5年返修臺數(臺)2122286580658488部分計算結果:,,,,注:年返修率=(1)從該公司年的相關數據中任意選取3年的數據,以表示3年中生產部門獲得考核優(yōu)秀的次數,求的分布列和數學期望;(2)根據散點圖發(fā)現(xiàn)2015年數據偏差較大,如果去掉該年的數據,試用剩下的數據求出年利潤(百萬元)關于年生產臺數(萬臺)的線性回歸方程(精確到0.01).附:線性回歸方程中,,.20.(12分)已知數列是各項均為正數的等比數列,數列為等差數列,且,,.(1)求數列與的通項公式;(2)求數列的前項和;(3)設為數列的前項和,若對于任意,有,求實數的值.21.(12分)已知函數(,),.(Ⅰ)討論的單調性;(Ⅱ)若對任意的,恒成立,求實數的取值范圍.22.(10分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點,.(1)求證:平面;(2)求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由余弦的二倍角公式化簡函數為,要想在括號內構造變?yōu)檎液瘮?,至少需要向左平移個單位長度,即為答案.【詳解】由題可知,對其向左平移個單位長度后,,其圖像關于坐標原點對稱故的最小值為故選:B【點睛】本題考查三角函數圖象性質與平移變換,還考查了余弦的二倍角公式逆運用,屬于簡單題.2、A【解析】
根據幾何體分析正視圖和側視圖的形狀,結合題干中的數據可計算出結果.【詳解】由三視圖的性質和定義知,三棱錐的正視圖與側視圖都是底邊長為高為的三角形,其面積都是,正視圖與側視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側視圖的面積和,解答的關鍵就是分析出正視圖和側視圖的形狀,考查空間想象能力與計算能力,屬于基礎題.3、D【解析】
根據對稱關系可將問題轉化為與有且僅有四個不同的交點;利用導數研究的單調性從而得到的圖象;由直線恒過定點,通過數形結合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進而得到結果.【詳解】關于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當時,在上單調遞減;在上單調遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當時,與有且僅有四個不同的交點設,,則,解得:設,,則,解得:,則本題正確選項:【點睛】本題考查根據直線與曲線交點個數確定參數范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關鍵是能夠通過對稱性將問題轉化為直線與曲線交點個數的問題,通過確定直線恒過的定點,采用數形結合的方式來進行求解.4、B【解析】
先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產生的空檔中,共有種不同方式;根據分類加法、分步乘法原理,得滿足要求的排隊方法數為種.故選:B.【點睛】本題考查排列組合的綜合應用,在分類時,要注意不重不漏的原則,本題是一道中檔題.5、B【解析】
每個式子的值依次構成一個數列,然后歸納出數列的遞推關系后再計算.【詳解】以及數列的應用根據題設條件,設數字,,,,,,,構成一個數列,可得數列滿足,則,,.故選:B.【點睛】本題主要考查歸納推理,解題關鍵是通過數列的項歸納出遞推關系,從而可確定數列的一些項.6、B【解析】
利用誘導公式以及同角三角函數基本關系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導公式的應用,同角三角函數基本關系式的應用,考查計算能力.7、B【解析】
根據正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據矩形的面積公式,可得結果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側面均為邊長為2的正方形,所以該正三棱柱的側面積為故選:B【點睛】本題考查正三棱柱側面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.8、B【解析】
解出兩個不等式的解集,根據充分條件和必要條件的定義,即可得到本題答案.【詳解】由,得,又由,得,因為集合,所以“”是“”的必要不充分條件.故選:B【點睛】本題主要考查必要不充分條件的判斷,其中涉及到絕對值不等式和一元二次不等式的解法.9、B【解析】
直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.10、C【解析】
設,則,則,即可得,設,利用導函數判斷的零點的個數,即為所求.【詳解】設,則,所以,依題意可得,設,則,當時,,則單調遞減;當時,,則單調遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數為2.故選:C【點睛】本題考查利用導函數處理零點問題,考查向量的坐標運算,考查零點存在性定理的應用.11、A【解析】
由題意,根據雙曲線的對稱性知在軸上,設,則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.12、C【解析】試題分析:集合考點:集合間的關系二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出不等式組對應的平面區(qū)域,利用目標函數的最小值為,確定出的值,進而確定出C點坐標,結合目標函數幾何意義,從而求得結果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內,由得可知,直線的截距最大時,取得最小值,此時直線為,作出直線,交于A點,由圖象可知,目標函數在該點取得最小值,所以直線也過A點,由,得,代入,得,所以點C的坐標為.等價于點與原點連線的斜率,所以當點為點C時,取得最小值,最小值為,故答案為:.【點睛】該題考查的是有關線性規(guī)劃的問題,在解題的過程中,注意正確畫出約束條件對應的可行域,根據最值求出參數,結合分式型目標函數的意義求得最優(yōu)解,屬于中檔題目.14、【解析】
利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當時,到直線的距離,不成立,當時,與圓相交于,兩點,到直線的距離,故答案為.【點睛】考查直線與圓的位置關系,相切和相交問題,屬于中檔題.15、【解析】
先根據莖葉圖求出平均數和中位數,然后可得結果.【詳解】剩下的四個數為83,85,87,95,且這四個數的平均數,這四個數的中位數為,則所剩數據的平均數與中位數的差為.【點睛】本題主要考查莖葉圖的識別和統(tǒng)計量的計算,側重考查數據分析和數學運算的核心素養(yǎng).16、【解析】在圓上其他位置任取一點B,設圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2);【解析】
(1),,可得為公比為2的等比數列,可得為公差為1的等差數列,再算出,的通項公式,解方程組即可;(2)利用分組求和法解決.【詳解】(1)依題意有又.可得數列為公比為2的等比數列,為公差為1的等差數列,由,得解得故數列,的通項公式分別為.(2),.【點睛】本題考查利用遞推公式求數列的通項公式以及分組求和法求數列的前n項和,考查學生的計算能力,是一道中檔題.18、(Ⅰ)0.288(Ⅱ)(?。┮娊馕觯áⅲ祵W期望的最大值為280【解析】
(Ⅰ)根據題意,設購買該商品的3位顧客中,選擇分2期付款的人數為,由獨立重復事件的特點得出,利用二項分布的概率公式,即可求出結果;(Ⅱ)(ⅰ)依題意,的取值為200,250,300,350,400,根據離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據的分布列,得出的數學期望,結合,即可算出的最大值.【詳解】解:(Ⅰ)設購買該商品的3位顧客中,選擇分2期付款的人數為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當時,的最大值為280,所以的數學期望的最大值為280.【點睛】本題考查獨立重復事件和二項分布的應用,以及離散型分布列和數學期望,考查計算能力.19、(1)見解析;(2)【解析】
(1)先判斷得到隨機變量的所有可能取值,然后根據古典概型概率公式和組合數計算得到相應的概率,進而得到分布列和期望.(2)由于去掉年的數據后不影響的值,可根據表中數據求出;然后再根據去掉年的數據后所剩數據求出即可得到回歸直線方程.【詳解】(1)由數據可知,,,,,五個年份考核優(yōu)秀.由題意的所有可能取值為,,,,,,,.故的分布列為:所以.(2)因為,所以去掉年的數據后不影響的值,所以.又去掉年的數據之后,所以,從而回歸方程為:.【點睛】求線性回歸方程時要涉及到大量的計算,所以在解題時要注意運算的合理性和正確性,對于題目中給出的中間數據要合理利用.本題考查概率和統(tǒng)計的結合,這也是高考中常出現(xiàn)的題型,屬于基礎題.20、(1),(2)(3)【解析】
(1)假設公差,公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信息技術項目招投標跟蹤
- 住宅小區(qū)鉆孔樁施工協(xié)議
- 水庫水質凈化施工合同
- 物流行業(yè)工作與休息安排
- 廈門市民宿衛(wèi)生防疫措施
- 學?;顒影褪孔赓U服務合同
- 影視作品授權合同
- 互聯(lián)網行業(yè)產品經理培訓大綱
- 住宅小區(qū)配電房施工協(xié)議
- 運動器材公司著作權保護
- 2024版企業(yè)股權收購并購重組方案合同3篇
- 2024年公司年會領導演講稿致辭(5篇)
- 藥理學(浙江大學)智慧樹知到答案2024年浙江大學
- 北京市東城區(qū)2023-2024學年八年級上學期期末生物試題【含答案解析】
- 2023-2024學年深圳市初三中考適應性考試英語試題(含答案)
- 軍事理論智慧樹知到期末考試答案2024年
- 2024年貴州貴安發(fā)展集團有限公司招聘筆試參考題庫附帶答案詳解
- 12、口腔科診療指南及技術操作規(guī)范
- 馬清河灌區(qū)灌溉系統(tǒng)的規(guī)劃設計課程設計
- 環(huán)境隱患排查治理檔案臺賬
- 《輪滑》專項體育課教學大綱、教學計劃
評論
0/150
提交評論