2025屆湖南省株洲市醴陵第二中學高考數(shù)學二模試卷含解析_第1頁
2025屆湖南省株洲市醴陵第二中學高考數(shù)學二模試卷含解析_第2頁
2025屆湖南省株洲市醴陵第二中學高考數(shù)學二模試卷含解析_第3頁
2025屆湖南省株洲市醴陵第二中學高考數(shù)學二模試卷含解析_第4頁
2025屆湖南省株洲市醴陵第二中學高考數(shù)學二模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖南省株洲市醴陵第二中學高考數(shù)學二模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米2.設正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.23.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.4.已知復數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.5.若復數(shù)滿足(是虛數(shù)單位),則()A. B. C. D.6.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.7.下列函數(shù)中,圖象關于軸對稱的為()A. B.,C. D.8.已知數(shù)列的前n項和為,,且對于任意,滿足,則()A. B. C. D.9.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題10.如圖是甲、乙兩位同學在六次數(shù)學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等11.在復平面內,復數(shù)(為虛數(shù)單位)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.執(zhí)行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,曲線上任意一點到直線的距離的最小值為________.14.已知實數(shù)a,b,c滿足,則的最小值是______.15.已知函數(shù)的定義域為R,導函數(shù)為,若,且,則滿足的x的取值范圍為______.16.若關于的不等式在上恒成立,則的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.曲線的極坐標方程為:,曲線的參數(shù)方程為其中,為參數(shù),為常數(shù).(1)寫出與的直角坐標方程;(2)在什么范圍內取值時,與有交點.18.(12分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點,且,求的值.19.(12分)在三角形中,角,,的對邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.20.(12分)在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知:,:,:.(1)求與的極坐標方程(2)若與交于點A,與交于點B,,求的最大值.21.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個條件中選一個,補充到上面問題中,并完成解答.)22.(10分)已知橢圓,過的直線與橢圓相交于兩點,且與軸相交于點.(1)若,求直線的方程;(2)設關于軸的對稱點為,證明:直線過軸上的定點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據題意,是一個等比數(shù)列模型,設,由,解得,再求和.【詳解】根據題意,這是一個等比數(shù)列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數(shù)列的實際應用,還考查了建模解模的能力,屬于中檔題.2、D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質的應用,屬于基礎題.3、B【解析】

根據特殊值及函數(shù)的單調性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調,故排除C;故選:B【點睛】本題考查根據函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.4、A【解析】

對復數(shù)進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復數(shù)的四則運算及虛部的概念,計算過程要注意.5、B【解析】

利用復數(shù)乘法運算化簡,由此求得.【詳解】依題意,所以.故選:B【點睛】本小題主要考查復數(shù)的乘法運算,考查復數(shù)模的計算,屬于基礎題.6、D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.7、D【解析】

圖象關于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質對選項進行判斷可解.【詳解】圖象關于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域為,不關于原點對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內任意一個都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關于原點(軸)對稱.8、D【解析】

利用數(shù)列的遞推關系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可.【詳解】當時,.所以數(shù)列從第2項起為等差數(shù)列,,所以,,.,,.故選:.【點睛】本題考查數(shù)列的遞推關系式的應用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉化思想以及計算能力,是中檔題.9、B【解析】

由的單調性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對于命題q,當,即時,;當,即時,,由,得,無解,因此命題q是假命題.所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤.故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于中檔題.10、B【解析】

由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點睛】本題考查莖葉圖的應用,考查平均數(shù)和方差等概念,培養(yǎng)計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎題.11、D【解析】

將復數(shù)化簡得,,即可得到對應的點為,即可得出結果.【詳解】,對應的點位于第四象限.故選:.【點睛】本題考查復數(shù)的四則運算,考查共軛復數(shù)和復數(shù)與平面內點的對應,難度容易.12、B【解析】

根據程序框圖知當時,循環(huán)終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執(zhí)行的求解策略.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

解法一:曲線上任取一點,利用基本不等式可求出該點到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點坐標,再計算出切點到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點,該點到直線的距離為,當且僅當時,即當時,等號成立,因此,曲線上任意一點到直線距離的最小值為;解法二(導數(shù)法):曲線的函數(shù)解析式為,則,設過曲線上任意一點的切線與直線平行,則,解得,當時,到直線的距離;當時,到直線的距離.所以曲線上任意一點到直線的距離的最小值為.故答案為:.【點睛】本題考查曲線上一點到直線距離最小值的計算,可轉化為利用切線與直線平行來找出切點,轉化為切點到直線的距離,也可以設曲線上的動點坐標,利用基本不等式法或函數(shù)的最值進行求解,考查分析問題和解決問題的能力,屬于中等題.14、【解析】

先分離出,應用基本不等式轉化為關于c的二次函數(shù),進而求出最小值.【詳解】解:若取最小值,則異號,,根據題意得:,又由,即有,則,即的最小值為,故答案為:【點睛】本題考查了基本不等式以及二次函數(shù)配方求最值,屬于中檔題.15、【解析】

構造函數(shù),再根據條件確定為奇函數(shù)且在上單調遞減,最后利用單調性以及奇偶性化簡不等式,解得結果.【詳解】依題意,,令,則,故函數(shù)為奇函數(shù),故函數(shù)在上單調遞減,則,即,故,則x的取值范圍為.故答案為:【點睛】本題考查函數(shù)奇偶性、單調性以及利用函數(shù)性質解不等式,考查綜合分析求解能力,屬中檔題.16、【解析】

分類討論,時不合題意;時求導,求出函數(shù)的單調區(qū)間,得到在上的最小值,利用不等式恒成立轉化為函數(shù)最小值,化簡得,構造放縮函數(shù)對自變量再研究,可解,【詳解】令;當時,,不合題意;當時,,令,得或,所以在區(qū)間和上單調遞減.因為,且在區(qū)間上單調遞增,所以在處取極小值,即最小值為.若,,則,即.當時,,當時,則.設,則.當時,;當時,,所以在上單調遞增;在上單調遞減,所以,即,所以的最大值為.故答案為:【點睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數(shù))對任意的恒成立,求參數(shù)的取值范圍.利用導數(shù)解決此類問題可以運用分離參數(shù)法;如果無法分離參數(shù),可以考慮對參數(shù)或自變量進行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(,或,)求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),.(2)【解析】

(1)利用,代入可求;消參可得直角坐標方程.(2)將的參數(shù)方程代入的直角坐標方程,與有交點,可得,解不等式即可求解.【詳解】(1)(2)將的參數(shù)方程代入的直角坐標方程得:與有交點,即【點睛】本題考查了極坐標方程與普通方程的轉化、參數(shù)方程與普通方程的轉化、直線與圓的位置關系的判斷,屬于基礎題.18、(1),(2)0【解析】

(1)分別把兩曲線參數(shù)方程中的參數(shù)消去,即可得到普通方程;(2)把直線的參數(shù)方程代入的普通方程,化為關于的一元二次方程,再由根與系數(shù)的關系及此時的幾何意義求解.【詳解】(1)由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得;由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得,即.(2)把為參數(shù))代入,得.,..解得:,即,滿足△..【點睛】本題考查參數(shù)方程化普通方程,特別是直線參數(shù)方程中參數(shù)的幾何意義的應用,是中檔題.19、(Ⅰ)(Ⅱ)8【解析】

(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據同角的三角函數(shù)的關系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因為,所以;(Ⅱ)因為,所以,因為,,由正弦定理得,所以.【點睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.20、(1)的極坐標方程為;的極坐標方程為:(2)【解析】

(1)根據,代入即可轉化.(2)由:,可得,代入與的極坐標方程求出,從而可得,再利用二倍角公式、輔助角公式,借助三角函數(shù)的性質即可求解.【詳解】(1):,,的極坐標方程為:,,的極坐標方程為:,(2):,則(為銳角),,,,當時取等號.【點睛】本題考查了極坐標與直角坐標的互化、二倍角公式、輔助角公式以及三角函數(shù)的性質,屬于基礎題.21、見解析【解析】

選擇①時:,,計算,根據正弦定理得到,計算面積得到答案;選擇②時,,,故,為鈍角,故無解;選擇③時,,根據正弦定理解得,,根據正弦定理得到,計算面積得到答案.【詳解】選擇①時:,,故.根據正弦定理:,故,故.選擇②時,,,故,為鈍角,故無解.選擇③時,,根據正弦定理:,故,解得,.根據正弦定理:,故,故.【點睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學生的計算能力和綜合應用能力.22、(1)或;(2)見解析【解析】

(1)由已知條件利用點斜式設出直線的方程,則可表示出點的坐標,再由的關系表示出點的坐標,而點在橢圓上,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論