版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖北省隨州市隨縣高三六校第一次聯(lián)考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關于原點O的對稱點為A,點P關于x軸的對稱點為Q,設,直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.2.二項式的展開式中,常數項為()A. B.80 C. D.1603.將函數的圖象先向右平移個單位長度,在把所得函數圖象的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到函數的圖象,若函數在上沒有零點,則的取值范圍是()A. B.C. D.4.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.5.設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則6.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.7.設復數,則=()A.1 B. C. D.8.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm39.年部分省市將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.10.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁11.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種12.函數的一個零點在區(qū)間內,則實數a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數的圖象向左平移個單位長度,得到一個偶函數圖象,則________.14.已知函數在上單調遞增,則實數a值范圍為_________.15.如圖,的外接圓半徑為,為邊上一點,且,,則的面積為______.16.已知點為雙曲線的右焦點,兩點在雙曲線上,且關于原點對稱,若,設,且,則該雙曲線的焦距的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的參數方程為(為參數),直線經過點且傾斜角為.(1)求曲線的極坐標方程和直線的參數方程;(2)已知直線與曲線交于,滿足為的中點,求.18.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.19.(12分)設函數.(1)當時,解不等式;(2)若的解集為,,求證:.20.(12分)已知數列滿足(),數列的前項和,(),且,.(1)求數列的通項公式:(2)求數列的通項公式.(3)設,記是數列的前項和,求正整數,使得對于任意的均有.21.(12分)已知函數(I)若討論的單調性;(Ⅱ)若,且對于函數的圖象上兩點,存在,使得函數的圖象在處的切線.求證:.22.(10分)已知是拋物線的焦點,點在軸上,為坐標原點,且滿足,經過點且垂直于軸的直線與拋物線交于、兩點,且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
設,則,,,設,根據化簡得到,得到答案.【詳解】設,則,,,則,設,則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力和轉化能力.2、A【解析】
求出二項式的展開式的通式,再令的次數為零,可得結果.【詳解】解:二項式展開式的通式為,令,解得,則常數項為.故選:A.【點睛】本題考查二項式定理指定項的求解,關鍵是熟練應用二項展開式的通式,是基礎題.3、A【解析】
根據y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據定義域求出的范圍,再利用余弦函數的圖象和性質,求得ω的取值范圍.【詳解】函數的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數的圖象,∴周期,若函數在上沒有零點,∴,∴,,解得,又,解得,當k=0時,解,當k=-1時,,可得,.故答案為:A.【點睛】本題考查函數y=Acos(ωx+φ)的圖象變換及零點問題,此類問題通常采用數形結合思想,構建不等關系式,求解可得,屬于較難題.4、C【解析】
先計算出總的基本事件的個數,再計算出兩張都沒獲獎的個數,根據古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數學建模、數學計算能力,屬于基礎題.5、C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.6、C【解析】
以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數形結合思想和向量法的應用,屬于中檔題.7、A【解析】
根據復數的除法運算,代入化簡即可求解.【詳解】復數,則故選:A.【點睛】本題考查了復數的除法運算與化簡求值,屬于基礎題.8、B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.9、B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.10、A【解析】
可采用假設法進行討論推理,即可得到結論.【詳解】由題意,假設甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,丁:我沒有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設甲:我沒有抓到是假的,那么?。何覜]有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應用,其中解答中合理采用假設法進行討論推理是解答的關鍵,著重考查了推理與分析判斷能力,屬于基礎題.11、C【解析】
根據題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數,由分步計數原理計算可得答案.【詳解】解:根據題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應用,涉及分步計數原理問題,屬于基礎題.12、C【解析】
顯然函數在區(qū)間內連續(xù),由的一個零點在區(qū)間內,則,即可求解.【詳解】由題,顯然函數在區(qū)間內連續(xù),因為的一個零點在區(qū)間內,所以,即,解得,故選:C【點睛】本題考查零點存在性定理的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據平移后關于軸對稱可知關于對稱,進而利用特殊值構造方程,從而求得結果.【詳解】向左平移個單位長度后得到偶函數圖象,即關于軸對稱關于對稱即:本題正確結果:【點睛】本題考查根據三角函數的對稱軸求解參數值的問題,關鍵是能夠通過平移后的對稱軸得到原函數的對稱軸,進而利用特殊值的方式來進行求解.14、【解析】
由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價于在時恒成立,∴,解得.故答案為:.【點睛】本題考查函數的單調性,解題關鍵是問題轉化為恒成立,利用換元法和二次函數的性質易求解.15、【解析】
先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進一步得到B=C,最后利用面積公式計算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【點睛】本題考查正弦定理解三角形,考查學生的基本計算能力,要靈活運用正弦定理公式及三角形面積公式,本題屬于中檔題.16、【解析】
設雙曲線的左焦點為,連接,由于.所以四邊形為矩形,故,由雙曲線定義可得,再求的值域即可.【詳解】如圖,設雙曲線的左焦點為,連接,由于.所以四邊形為矩形,故.在中,由雙曲線的定義可得,.故答案為:【點睛】本題考查雙曲線定義及其性質,涉及到求余弦型函數的值域,考查學生的運算能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)由曲線的參數方程消去參數可得曲線的普通方程,由此可求曲線的極坐標方程;直接利用直線的傾斜角以及經過的點求出直線的參數方程即可;(2)將直線的參數方程,代入曲線的普通方程,整理得,利用韋達定理,根據為的中點,解出即可.【詳解】(1)由(為參數)消去參數,可得,即,已知曲線的普通方程為,,,,即,曲線的極坐標方程為,直線經過點,且傾斜角為,直線的參數方程:(為參數,).(2)設對應的參數分別為,.將直線的參數方程代入并整理,得,,.又為的中點,,,,,即,,,,即,.【點睛】本題考查了圓的參數方程與極坐標方程之間的互化以及直線參數方程的應用,考查了計算能力,屬于中檔題.18、.【解析】試題分析:,所以.試題解析:B.因為,所以.19、(1);(2)見解析.【解析】
(1)當時,將所求不等式變形為,然后分、、三段解不等式,綜合可得出原不等式的解集;(2)先由不等式的解集求得實數,可得出,將代數式變形為,將與相乘,展開后利用基本不等式可求得的最小值,進而可證得結論.【詳解】(1)當時,不等式為,且.當時,由得,解得,此時;當時,由得,該不等式不成立,此時;當時,由得,解得,此時.綜上所述,不等式的解集為;(2)由,得,即或,不等式的解集為,故,解得,,,,,當且僅當,時取等號,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式,考查推理能力與計算能力,屬于中等題.20、(1)().(2),.(3)【解析】
(1)依題意先求出,然后根據,求出的通項公式為,再檢驗的情況即可;(2)由遞推公式,得,結合數列性質可得數列相鄰項之間的關系,從而可求出結果;(3)通過(1)、(2)可得,所以,,,,.記,利用函數單調性可求的范圍,從而列不等式可解.【詳解】解:(1)因為數列滿足()①;②當時,.檢驗當時,成立.所以,數列的通項公式為().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因為,所以,上式同除以,得,,即,所以,數列時首項為1,公差為1的等差數列,故,.(3)因為.所以,,,,.記,當時,.所以,當時,數列為單調遞減,當時,.從而,當時,.因此,.所以,對任意的,.綜上,.【點睛】本題考在數列通項公式的求法、等差數列的定義及通項公式、數列的單調性,考查考生的邏輯思維能力、運算求解能力以及化歸與轉化思想、分類討論思想.21、(1)見解析(2)見證明【解析】
(1)對函數求導,分別討論,以及,即可得出結果;(2)根據題意,由導數幾何意義得到,將證明轉化為證明即可,再令,設,用導數方法判斷出的單調性,進而可得出結論成立.【詳解】(1)解:易得,函數的定義域為,,令,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025購銷合同書下載范文
- 2025機械(設備)租賃合同
- 二零二五年度全新托管班教學質量監(jiān)控合同3篇
- 2025年度公司設立前股東共同管理細則協(xié)議3篇
- 二零二五年度委托監(jiān)護與協(xié)議監(jiān)護生活照料安全保障全面服務合同2篇
- 二零二五年度農產品市場開拓與推廣合同3篇
- 二零二五年度加油站防火門定期檢查與快速更換服務協(xié)議3篇
- 2025年度公司與施工隊基礎設施建設項目施工合同3篇
- 2025年度保險公司與災害應急救援合作保障協(xié)議3篇
- 二零二五年度養(yǎng)殖場養(yǎng)殖技術研發(fā)用工合同3篇
- 央國企信創(chuàng)化與數字化轉型規(guī)劃實施
- 會計學原理期末測試練習題及答案
- 2024年7月國家開放大學法律事務??啤镀髽I(yè)法務》期末紙質考試試題及答案
- 《教師法》培訓課件
- 常用護理評估表及注意事項
- 河北省唐山地區(qū)2023-2024學年上學期期末八年級歷史試卷
- 專題06直線與圓的位置關系、圓與圓的位置關系(課時訓練)原卷版
- 軍用裝備信息化融合與互聯(lián)
- 人才培養(yǎng)與團隊建設計劃三篇
- 2024年急性胰腺炎急診診治專家共識解讀課件
- 六年級地方課程教案
評論
0/150
提交評論