版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專(zhuān)題02利用圓的性質(zhì)進(jìn)行求解的問(wèn)題圓在壓軸題中考查綜合性比較強(qiáng),常與二次函數(shù)、全等三角形以及相似三角形結(jié)合進(jìn)行考查,本專(zhuān)題中重點(diǎn)側(cè)重壓軸題中對(duì)圓的性質(zhì)的考查部分,需要考生熟練掌握與圓有關(guān)的性質(zhì)。圓有關(guān)的性質(zhì):1.圓的對(duì)稱(chēng)性:圓既是軸對(duì)稱(chēng)圖形有時(shí)中心對(duì)稱(chēng)圖形。2.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條?。?.垂徑定理的推論推論1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條??;推論2:弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條?。?.圓心角、弧、弦的關(guān)系定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等。5.圓心角、弧、弦的關(guān)系定理推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。6.圓周角定理定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.7.圓周角定理的推論:推論1:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等。推論2:直徑所對(duì)的圓周角是直角.8.點(diǎn)與圓的位置關(guān)系:設(shè)點(diǎn)到圓心的距離為d.(1)d<r?點(diǎn)在⊙O內(nèi);(2)d=r?點(diǎn)在⊙O上;(3)d>r?點(diǎn)在⊙O外.9.直線和圓的位置關(guān)系位置關(guān)系相離相切相交公共點(diǎn)個(gè)數(shù)0個(gè)1個(gè)2個(gè)數(shù)量關(guān)系d>rd=rd<r10.切線的性質(zhì):切線與圓只有一個(gè)公共點(diǎn);切線到圓心的距離等于圓的半徑;切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。11.切線的判定(1)與圓只有一個(gè)公共點(diǎn)的直線是圓的切線(定義);(2)到圓心的距離等于半徑的直線是圓的切線;(3)經(jīng)過(guò)半徑外端點(diǎn)并且垂直于這條半徑的直線是圓的切線。12.三角形的外接圓:經(jīng)過(guò)三角形各頂點(diǎn)的圓叫做三角形的外接圓,外接圓的圓心叫做三角形的外心,這個(gè)三角形叫做圓的內(nèi)接三角形。外心是三角形三條垂直平分線的交點(diǎn),它到三角形的三個(gè)頂點(diǎn)的距離相等。13.三角形的內(nèi)切圓:與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個(gè)三角形叫做圓的外切三角形;內(nèi)心是三角形三條角平分線的交點(diǎn),它到三角形的三條邊的距離相等。14.正多邊形的有關(guān)概念(1)正多邊形中心:正多邊形的外接圓的圓心叫做這個(gè)正多邊形的中心;(2)正多邊形半徑:正多邊形外接圓的半徑叫做正多邊形半徑;(3)正多邊形中心角:正多邊形每一邊所對(duì)的圓心角叫做正多邊形中心角;(4)正多邊形邊心距:正多邊形中心到正多邊形的一邊的距離叫做正多邊形的邊心距。15.弧長(zhǎng)和扇形面積的計(jì)算:扇形的弧長(zhǎng)l=SKIPIF1<0;扇形的面積S=SKIPIF1<0=SKIPIF1<0.16.圓錐與側(cè)面展開(kāi)圖(1)圓錐側(cè)面展開(kāi)圖是一個(gè)扇形,扇形的半徑等于圓錐的母線,扇形的弧長(zhǎng)等于圓錐的底面周長(zhǎng)。(2)若圓錐的底面半徑為r,母線長(zhǎng)為l,則這個(gè)扇形的半徑為l,扇形的弧長(zhǎng)為2πr,圓錐的側(cè)面積為S圓錐側(cè)=SKIPIF1<0.圓錐的表面積:S圓錐表=S圓錐側(cè)+S圓錐底=πrl+πr2=πr·(l+r). (2022·黑龍江哈爾濱·統(tǒng)考中考真題)已知SKIPIF1<0是SKIPIF1<0的直徑,點(diǎn)A,點(diǎn)B是SKIPIF1<0上的兩個(gè)點(diǎn),連接SKIPIF1<0,點(diǎn)D,點(diǎn)E分別是半徑SKIPIF1<0的中點(diǎn),連接SKIPIF1<0,且SKIPIF1<0.(1)如圖1,求證:SKIPIF1<0;(2)如圖2,延長(zhǎng)SKIPIF1<0交SKIPIF1<0于點(diǎn)F,若SKIPIF1<0,求證:SKIPIF1<0;(3)如圖3,在(2)的條件下,點(diǎn)G是SKIPIF1<0上一點(diǎn),連接SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長(zhǎng).(1)根據(jù)SAS證明SKIPIF1<0即可得到結(jié)論;(2)證明SKIPIF1<0即可得出結(jié)論;(3)先證明SKIPIF1<0,連接SKIPIF1<0,證明SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0上取點(diǎn)M,使得SKIPIF1<0,連接SKIPIF1<0,證明SKIPIF1<0為等邊三角形,得SKIPIF1<0,根據(jù)SKIPIF1<0可求出SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,過(guò)點(diǎn)H作SKIPIF1<0于點(diǎn)N,求出SKIPIF1<0,再證SKIPIF1<0,根據(jù)SKIPIF1<0可得結(jié)論.【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)SKIPIF1<0【詳解】(1)如圖1.∵點(diǎn)D,點(diǎn)E分別是半徑SKIPIF1<0的中點(diǎn)∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0;(2)如圖2.∵SKIPIF1<0,∴SKIPIF1<0由(1)得SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0(3)如圖3.∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0連接SKIPIF1<0.∵SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0設(shè)SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上取點(diǎn)M,使得SKIPIF1<0,連接SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0為等邊三角形∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,過(guò)點(diǎn)H作SKIPIF1<0于點(diǎn)NSKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0.本題主要考查了圓周角定理,等邊三角形的判定和性質(zhì),全等三角形的判定與性質(zhì),等腰三角形的性質(zhì),勾股定理以及解直角三角形等知識(shí),正確作出輔助線構(gòu)造全等三角形是解答本題的關(guān)鍵.(2022·浙江溫州·統(tǒng)考中考真題)如圖1,SKIPIF1<0為半圓O的直徑,C為SKIPIF1<0延長(zhǎng)線上一點(diǎn),SKIPIF1<0切半圓于點(diǎn)D,SKIPIF1<0,交SKIPIF1<0延長(zhǎng)線于點(diǎn)E,交半圓于點(diǎn)F,已知SKIPIF1<0.點(diǎn)P,Q分別在線段SKIPIF1<0上(不與端點(diǎn)重合),且滿(mǎn)足SKIPIF1<0.設(shè)SKIPIF1<0.(1)求半圓O的半徑.(2)求y關(guān)于x的函數(shù)表達(dá)式.(3)如圖2,過(guò)點(diǎn)P作SKIPIF1<0于點(diǎn)R,連結(jié)SKIPIF1<0.①當(dāng)SKIPIF1<0為直角三角形時(shí),求x的值.②作點(diǎn)F關(guān)于SKIPIF1<0的對(duì)稱(chēng)點(diǎn)SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0落在SKIPIF1<0上時(shí),求SKIPIF1<0的值.(1)連接OD,設(shè)半徑為r,利用SKIPIF1<0,得SKIPIF1<0,代入計(jì)算即可;(2)根據(jù)CP=AP十AC,用含x的代數(shù)式表示AP的長(zhǎng),再由(1)計(jì)算求AC的長(zhǎng)即可;(3)①顯然SKIPIF1<0,所以分兩種情形,當(dāng)SKIPIF1<0時(shí),則四邊形RPQE是矩形,當(dāng)∠PQR=90°時(shí),過(guò)點(diǎn)P作PH⊥BE于點(diǎn)H,則四邊形PHER是矩形,分別根據(jù)圖形可得答案;②連接SKIPIF1<0,由對(duì)稱(chēng)可知SKIPIF1<0,利用三角函數(shù)表示出SKIPIF1<0和BF的長(zhǎng)度,從而解決問(wèn)題.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)①SKIPIF1<0或SKIPIF1<0;②SKIPIF1<0【詳解】(1)解:如圖1,連結(jié)SKIPIF1<0.設(shè)半圓O的半徑為r.∵SKIPIF1<0切半圓O于點(diǎn)D,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即半圓O的半徑是SKIPIF1<0.(2)由(1)得:SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.(3)①顯然SKIPIF1<0,所以分兩種情況.?。┊?dāng)SKIPIF1<0時(shí),如圖2.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴四邊形SKIPIF1<0為矩形,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.ⅱ)當(dāng)SKIPIF1<0時(shí),過(guò)點(diǎn)P作SKIPIF1<0于點(diǎn)H,如圖3,則四邊形SKIPIF1<0是矩形,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,∴SKIPIF1<0.綜上所述,x的值是SKIPIF1<0或SKIPIF1<0.②如圖4,連結(jié)SKIPIF1<0,由對(duì)稱(chēng)可知SKIPIF1<0,SKIPIF1<0∵BE⊥CE,PR⊥CE,∴PR∥BE,∴∠EQR=∠PRQ,∵SKIPIF1<0,SKIPIF1<0,∴EQ=3-x,∵PR∥BE,∴SKIPIF1<0,∴SKIPIF1<0,即:SKIPIF1<0,解得:CR=x+1,∴ER=EC-CR=3-x,即:EQ=ER∴∠EQR=∠ERQ=45°,∴SKIPIF1<0∴SKIPIF1<0,
∴SKIPIF1<0.∵SKIPIF1<0是半圓O的直徑,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.本題是圓的綜合題,主要考查了切線的性質(zhì),相似三角形的判定與性質(zhì),圓周角定理,三角函數(shù)等知識(shí),利用三角函數(shù)表示各線段的長(zhǎng)并運(yùn)用分類(lèi)討論思想是解題的關(guān)鍵.(2022·浙江舟山·中考真題)如圖1.在正方形SKIPIF1<0中,點(diǎn)F,H分別在邊SKIPIF1<0,SKIPIF1<0上,連結(jié)SKIPIF1<0,SKIPIF1<0交于點(diǎn)E,已知SKIPIF1<0.(1)線段SKIPIF1<0與SKIPIF1<0垂直嗎?請(qǐng)說(shuō)明理由.(2)如圖2,過(guò)點(diǎn)A,H,F(xiàn)的圓交SKIPIF1<0于點(diǎn)P,連結(jié)SKIPIF1<0交SKIPIF1<0于點(diǎn)K.求證:SKIPIF1<0.(3)如圖3,在(2)的條件下,當(dāng)點(diǎn)K是線段SKIPIF1<0的中點(diǎn)時(shí),求SKIPIF1<0的值.(1)證明SKIPIF1<0(SKIPIF1<0),得到SKIPIF1<0,進(jìn)一步得到SKIPIF1<0,由△CFH是等腰三角形,結(jié)論得證;(2)過(guò)點(diǎn)K作SKIPIF1<0于點(diǎn)G.先證△AKG∽△ACB,得SKIPIF1<0,證△KHG∽CHB可得SKIPIF1<0,結(jié)論得證;(3)過(guò)點(diǎn)K作SKIPIF1<0點(diǎn)G.求得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則KG=AG=GB=3a,則SKIPIF1<0,勾股定理得SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即可得到答案.【答案】(1)SKIPIF1<0,見(jiàn)解析;(2)見(jiàn)解析;(3)SKIPIF1<0【詳解】(1)證明:∵四邊形SKIPIF1<0是正方形,∴SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0(SKIPIF1<0),∴SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0∴△CFH是等腰三角形,∴SKIPIF1<0.(2)證明:如圖1,過(guò)點(diǎn)K作SKIPIF1<0于點(diǎn)G.∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(3)解:如圖2,過(guò)點(diǎn)K作SKIPIF1<0點(diǎn)G.∵點(diǎn)K為SKIPIF1<0中點(diǎn):由(2)得SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.此題考查正方形的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理、直角三角形全等的判定定理等知識(shí),熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.1.(2022·浙江溫州·溫州市第三中學(xué)??寄M)如圖,SKIPIF1<0是SKIPIF1<0的直徑,弦SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0是SKIPIF1<0上一動(dòng)點(diǎn)(不與點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0重合),以SKIPIF1<0,SKIPIF1<0為邊構(gòu)造平行四邊形SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0.(2)當(dāng)SKIPIF1<0與SKIPIF1<0相切時(shí),求SKIPIF1<0的長(zhǎng).(3)①當(dāng)SKIPIF1<0中有一個(gè)角與SKIPIF1<0相等時(shí),求SKIPIF1<0的長(zhǎng).②若點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對(duì)稱(chēng)點(diǎn)SKIPIF1<0落在SKIPIF1<0的內(nèi)部(不包括SKIPIF1<0的邊界),求SKIPIF1<0的取值范圍(直接寫(xiě)出答案).2.(2022·浙江寧波·校考一模)等腰三角形SKIPIF1<0中,SKIPIF1<0,且內(nèi)接于圓SKIPIF1<0,SKIPIF1<0、SKIPIF1<0為邊SKIPIF1<0上兩點(diǎn)(SKIPIF1<0在SKIPIF1<0、SKIPIF1<0之間),分別延長(zhǎng)SKIPIF1<0、SKIPIF1<0交圓SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點(diǎn)(如圖SKIPIF1<0),記SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的大小(用SKIPIF1<0,SKIPIF1<0表示);(2)連接SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0(如圖SKIPIF1<0),若SKIPIF1<0,且SKIPIF1<0,求證:SKIPIF1<0;(3)在(2)的條件下,取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0(如圖SKIPIF1<0),若SKIPIF1<0,①求證:SKIPIF1<0,SKIPIF1<0;②請(qǐng)直接寫(xiě)出SKIPIF1<0的值.3.(2022·河北邯鄲·??既#┤鐖D1,菱形ABCD的邊長(zhǎng)為12cm,∠B=60°,M,N分別在邊AB,CD.上,AM=3cm,DN=4cm,點(diǎn)P從點(diǎn)M出發(fā),沿折線MB﹣BC以1cm/s的速度向點(diǎn)C勻速運(yùn)動(dòng)(不與點(diǎn)C重合);△APC的外接圓⊙O與CD相交于點(diǎn)E,連接PE交AC于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts.(1)∠APE=°;(2)若⊙O與AD相切,①判斷⊙O與CD的位置關(guān)系;②求SKIPIF1<0的長(zhǎng);(3)如圖3,當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),求CF的最大值,并判斷此時(shí)PE與AC的位置關(guān)系;(4)若點(diǎn)N在⊙O的內(nèi)部,直接寫(xiě)出t的取值范圍.4.(2022·上海楊浦·統(tǒng)考二模)已知在扇形SKIPIF1<0中,點(diǎn)C、D是SK
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- -記上海第二醫(yī)科大學(xué)病理生理學(xué)教研室主任陳國(guó)強(qiáng)知識(shí)講解
- 會(huì)計(jì)學(xué)第九章財(cái)產(chǎn)清查
- 2024年浙江經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試歷年參考題庫(kù)含答案解析
- 一年級(jí)道德與法治上冊(cè)第一單元我是小學(xué)生啦1開(kāi)開(kāi)心心上學(xué)去課件新人教版
- 2024年浙江醫(yī)藥高等專(zhuān)科學(xué)校高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 產(chǎn)品宣傳冊(cè)設(shè)計(jì)合同8篇
- 2024年陸軍五十七醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 2024年陽(yáng)泉市城區(qū)人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 2024年江陽(yáng)城建職業(yè)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 2024年江蘇海事職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 2024年大數(shù)據(jù)分析公司與中國(guó)政府合作協(xié)議
- 一年級(jí)數(shù)學(xué)(上)計(jì)算題專(zhuān)項(xiàng)練習(xí)匯編
- 中醫(yī)基礎(chǔ)理論課件
- 保安服務(wù)招投標(biāo)書(shū)范本(兩篇)2024
- 遼寧省沈陽(yáng)市五校協(xié)作體2024-2025學(xué)年高二上學(xué)期11月期中考試語(yǔ)文試題(含答案)
- 算法分析與設(shè)計(jì)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 保密知識(shí)培訓(xùn)
- 2024醫(yī)療器械質(zhì)量管理制度
- 安徽省2017年中考英語(yǔ)真題(含答案)
- 江西省穩(wěn)派教育2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析
- 城鎮(zhèn)排水防澇技術(shù)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論