版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省兩校聯(lián)考2025屆高考適應(yīng)性考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.2.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知函數(shù),若,則a的取值范圍為()A. B. C. D.4.關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),某同學(xué)通過(guò)下面的隨機(jī)模擬方法來(lái)估計(jì)的值:先用計(jì)算機(jī)產(chǎn)生個(gè)數(shù)對(duì),其中,都是區(qū)間上的均勻隨機(jī)數(shù),再統(tǒng)計(jì),能與構(gòu)成銳角三角形三邊長(zhǎng)的數(shù)對(duì)的個(gè)數(shù)﹔最后根據(jù)統(tǒng)計(jì)數(shù)來(lái)估計(jì)的值.若,則的估計(jì)值為()A. B. C. D.5.設(shè)數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,,且,則()A.128 B.65 C.64 D.636.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.177.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點(diǎn),已知過(guò)與的平面與圓錐側(cè)面的交線是以為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離等于()A. B.1 C. D.8.設(shè)函數(shù),當(dāng)時(shí),,則()A. B. C.1 D.9.下列四個(gè)結(jié)論中正確的個(gè)數(shù)是(1)對(duì)于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.410.已知函數(shù)的圖象如圖所示,則下列說(shuō)法錯(cuò)誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對(duì)稱中心是D.函數(shù)的對(duì)稱軸是11.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件12.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.14.在如圖所示的三角形數(shù)陣中,用表示第行第個(gè)數(shù),已知,且當(dāng)時(shí),每行中的其他各數(shù)均等于其“肩膀”上的兩個(gè)數(shù)之和,即,若,則正整數(shù)的最小值為_(kāi)_____.15.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問(wèn)卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_(kāi)______.16.設(shè)函數(shù),若對(duì)于任意的,∈[2,,≠,不等式恒成立,則實(shí)數(shù)a的取值范圍是.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對(duì)應(yīng)的變換作用下得到另一曲線,求曲線的方程.18.(12分)在綜合素質(zhì)評(píng)價(jià)的某個(gè)維度的測(cè)評(píng)中,依據(jù)評(píng)分細(xì)則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個(gè)分?jǐn)?shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學(xué)生的在該維度的測(cè)評(píng)結(jié)果,在畢業(yè)班中隨機(jī)抽出一個(gè)班的數(shù)據(jù).該班共有60名學(xué)生,得到如下的列聯(lián)表:優(yōu)秀合格總計(jì)男生6女生18合計(jì)60已知在該班隨機(jī)抽取1人測(cè)評(píng)結(jié)果為優(yōu)秀的概率為.(1)完成上面的列聯(lián)表;(2)能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系?(3)現(xiàn)在如果想了解全校學(xué)生在該維度的表現(xiàn)情況,采取簡(jiǎn)單隨機(jī)抽樣方式在全校學(xué)生中抽取少數(shù)一部分來(lái)分析,請(qǐng)你選擇一個(gè)合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.02419.(12分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點(diǎn),求證:平面;(2)若,求四棱錐的體積.20.(12分)已知.(1)已知關(guān)于的不等式有實(shí)數(shù)解,求的取值范圍;(2)求不等式的解集.21.(12分)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.22.(10分)在中,角所對(duì)的邊分別為,,的面積.(1)求角C;(2)求周長(zhǎng)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】設(shè),則函數(shù)的導(dǎo)數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價(jià)為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,是難題.2、B【解析】
或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點(diǎn)睛】本題考查充分性與必要性,簡(jiǎn)單三角方程的解法,屬于基礎(chǔ)題.3、C【解析】
求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解.4、B【解析】
先利用幾何概型的概率計(jì)算公式算出,能與構(gòu)成銳角三角形三邊長(zhǎng)的概率,然后再利用隨機(jī)模擬方法得到,能與構(gòu)成銳角三角形三邊長(zhǎng)的概率,二者概率相等即可估計(jì)出.【詳解】因?yàn)椋际菂^(qū)間上的均勻隨機(jī)數(shù),所以有,,若,能與構(gòu)成銳角三角形三邊長(zhǎng),則,由幾何概型的概率計(jì)算公式知,所以.故選:B.【點(diǎn)睛】本題考查幾何概型的概率計(jì)算公式及運(yùn)用隨機(jī)數(shù)模擬法估計(jì)概率,考查學(xué)生的基本計(jì)算能力,是一個(gè)中檔題.5、D【解析】
根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項(xiàng)和公式求.【詳解】因?yàn)?,所以,所以,所以?shù)列是等比數(shù)列,又因?yàn)?,所以?故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項(xiàng)和公式,還考查了運(yùn)算求解的能力,屬于中檔題.6、C【解析】
首先根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗(yàn)證即可;【詳解】解:∵,∴當(dāng)時(shí),滿足,∴實(shí)數(shù)可以為8.故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】
建立平面直角坐標(biāo)系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離.【詳解】將拋物線放入坐標(biāo)系,如圖所示,∵,,,∴,設(shè)拋物線,代入點(diǎn),可得∴焦點(diǎn)為,即焦點(diǎn)為中點(diǎn),設(shè)焦點(diǎn)為,,,∴.故選:D【點(diǎn)睛】本小題考查圓錐曲線的概念,拋物線的性質(zhì),兩點(diǎn)間的距離等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,空間想象能力,推理論證能力,應(yīng)用意識(shí).8、A【解析】
由降冪公式,兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時(shí),,,∴,由題意,∴.故選:A.【點(diǎn)睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.9、C【解析】
由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質(zhì),即可判定是正確的;(3)中,由回歸直線方程的性質(zhì)和直線的點(diǎn)斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,可知命題使得,則都有,是錯(cuò)誤的;(2)中,已知,正態(tài)分布曲線的性質(zhì),可知其對(duì)稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),由回歸直線方程的性質(zhì)和直線的點(diǎn)斜式方程,可得回歸直線方程為是正確;(4)中,當(dāng)時(shí),可得成立,當(dāng)時(shí),只需滿足,所以“”是“”成立的充分不必要條件.【點(diǎn)睛】本題主要考查了命題的真假判定及應(yīng)用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質(zhì)、回歸直線方程的性質(zhì),以及基本不等式的應(yīng)用等知識(shí)點(diǎn)的應(yīng)用,逐項(xiàng)判定是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.10、B【解析】
根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對(duì)稱性逐項(xiàng)判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點(diǎn)代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時(shí),函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時(shí),函數(shù)在上單調(diào)遞增,故B錯(cuò)誤;令,得,故函數(shù)的對(duì)稱中心是,故C正確;令,得,故函數(shù)的對(duì)稱軸是,故D正確.故選:B.【點(diǎn)睛】本題考查由圖象求余弦型函數(shù)的解析式,同時(shí)也考查了余弦型函數(shù)的單調(diào)性與對(duì)稱性的判斷,考查推理能力與計(jì)算能力,屬于中等題.11、A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點(diǎn):充分條件、必要條件.12、A【解析】
由題意可知直線過(guò)定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡(jiǎn)并求解出離心率的取值范圍.【詳解】設(shè),且線過(guò)定點(diǎn)即為的圓心,因?yàn)椋?,又因?yàn)椋?,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過(guò)運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡(jiǎn)化運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、55【解析】
由求出.由,可得,兩式相減,可得數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,即求.【詳解】由題意,當(dāng)n=1時(shí),,當(dāng)時(shí),由,可得,兩式相減,可得,整理得,,即,∴數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,.故答案為:55.【點(diǎn)睛】本題考查求數(shù)列的前項(xiàng)和,屬于基礎(chǔ)題.14、2022【解析】
根據(jù)條件先求出數(shù)列的通項(xiàng),利用累加法進(jìn)行求解即可.【詳解】,,,下面求數(shù)列的通項(xiàng),由題意知,,,,,,數(shù)列是遞增數(shù)列,且,的最小值為.故答案為:.【點(diǎn)睛】本題主要考查歸納推理的應(yīng)用,結(jié)合數(shù)列的性質(zhì)求出數(shù)列的通項(xiàng)是解決本題的關(guān)鍵.綜合性較強(qiáng),屬于難題.15、【解析】由分層抽樣的知識(shí)可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案.16、【解析】試題分析:由題意得函數(shù)在[2,上單調(diào)遞增,當(dāng)時(shí)在[2,上單調(diào)遞增;當(dāng)時(shí)在上單調(diào)遞增;在上單調(diào)遞減,因此實(shí)數(shù)a的取值范圍是考點(diǎn):函數(shù)單調(diào)性三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、【解析】
根據(jù),可解得,設(shè)為曲線任一點(diǎn),在矩陣對(duì)應(yīng)的變換作用下得到點(diǎn),則點(diǎn)在曲線上,根據(jù)變換的定義寫(xiě)出相應(yīng)的矩陣等式,再用表示出,代入曲線的方程中,即得.【詳解】,,即.,解得,.設(shè)為曲線任一點(diǎn),則,又設(shè)在矩陣A變換作用得到點(diǎn),則,即,所以即代入,得,所以曲線的方程為.【點(diǎn)睛】本題考查逆矩陣,矩陣與變換等,是基礎(chǔ)題.18、(1)見(jiàn)解析;(2)在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為“性別與測(cè)評(píng)結(jié)果有關(guān)系”(3)見(jiàn)解析.【解析】
(1)由已知抽取的人中優(yōu)秀人數(shù)為20,這樣結(jié)合已知可得列聯(lián)表;(2)根據(jù)列聯(lián)表計(jì)算,比較后可得;(3)由于性別對(duì)結(jié)果有影響,因此用分層抽樣法.【詳解】解:(1)優(yōu)秀合格總計(jì)男生62228女生141832合計(jì)204060(2)由于,因此在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為“性別與測(cè)評(píng)結(jié)果有關(guān)系”.(3)由(2)可知性別有可能對(duì)是否優(yōu)秀有影響,所以采用分層抽樣按男女生比例抽取一定的學(xué)生,這樣得到的結(jié)果對(duì)學(xué)生在該維度的總體表現(xiàn)情況會(huì)比較符合實(shí)際情況.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),考查分層抽樣的性質(zhì).考查學(xué)生的數(shù)據(jù)處理能力.屬于中檔題.19、(1)見(jiàn)解析(2)【解析】
(1)設(shè)EC與DF交于點(diǎn)N,連結(jié)MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點(diǎn)為G,連結(jié)BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入體積公式即可計(jì)算出體積.【詳解】(1)證明:設(shè)與交于點(diǎn),連接,在矩形中,點(diǎn)為中點(diǎn),∵為的中點(diǎn),∴,又∵平面,平面,∴平面.(2)取中點(diǎn)為,連接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的長(zhǎng)即為四棱錐的高,在梯形中,,∴四邊形是平行四邊形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【點(diǎn)睛】求錐體的體積要充分利用多面體的截面和旋轉(zhuǎn)體的軸截面,將空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題求解,注意求體積的一些特殊方法——分割法、補(bǔ)形法、等體積法.①割補(bǔ)法:求一些不規(guī)則幾何體的體積時(shí),常用割補(bǔ)法轉(zhuǎn)化成已知體積公式的幾何體進(jìn)行解決.②等積法:等積法包括等面積法和等體積法.等積法的前提是幾何圖形(或幾何體)的面積(或體積)通過(guò)已知條件可以得到,利用等積法可以用來(lái)求解幾何圖形的高或幾何體的高,特別是在求三角形的高和三棱錐的高時(shí),這一方
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度兼職業(yè)務(wù)員線上線下銷(xiāo)售合作合同2篇
- 二零二五年度農(nóng)業(yè)科技示范園農(nóng)民勞務(wù)合作合同
- 二零二五年度智能交通系統(tǒng)股東股權(quán)交易及技術(shù)支持協(xié)議3篇
- 2025年度大型養(yǎng)殖場(chǎng)租賃征收補(bǔ)償協(xié)議書(shū)3篇
- 2025農(nóng)村兄弟家庭財(cái)產(chǎn)分割與分家協(xié)議書(shū)
- 2025年度年度教育機(jī)構(gòu)兼職教師教學(xué)資源共享與保護(hù)條款3篇
- 二零二五年度智能化農(nóng)機(jī)設(shè)備買(mǎi)賣(mài)合作協(xié)議3篇
- 二零二五年度農(nóng)村村委會(huì)村莊農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)調(diào)整與改造合同
- 2025年石材加工與安裝一體化服務(wù)合同3篇
- 二零二五年度新能源工廠設(shè)備整體轉(zhuǎn)讓協(xié)議3篇
- 2024年度特許經(jīng)營(yíng)合同連鎖酒店品牌授權(quán)與管理2篇
- 廣東省潮州市2023-2024學(xué)年高二上學(xué)期期末考試 數(shù)學(xué) 含解析
- 2024年度技術(shù)咨詢合同:某科技公司與某政府機(jī)構(gòu)關(guān)于技術(shù)咨詢服務(wù)的協(xié)議(2024版)2篇
- 醫(yī)療科研配色
- 期末復(fù)習(xí)基礎(chǔ)卷(試題)-2024-2025學(xué)年一年級(jí)上冊(cè)數(shù)學(xué)人教版
- 2024年放射科應(yīng)急預(yù)案演練(大全)
- 胡頹子育苗技術(shù)規(guī)程-地方標(biāo)準(zhǔn)修訂說(shuō)明
- 2024年金融理財(cái)-金融理財(cái)師(AFP)考試近5年真題附答案
- 2022版義務(wù)教育物理課程標(biāo)準(zhǔn)
- 數(shù)字資產(chǎn)管理與優(yōu)化考核試卷
- 期末測(cè)試-2024-2025學(xué)年語(yǔ)文四年級(jí)上冊(cè)統(tǒng)編版
評(píng)論
0/150
提交評(píng)論