版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
…………○…………內…………○…………裝…………○…………內…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年滬科版高一數(shù)學下冊階段測試試卷596考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共7題,共14分)1、【題文】若函數(shù)在上是減函數(shù);則實數(shù)a的取值范圍是。
Ab.c.d.2、已知球的直徑是該球面上的兩點,則三棱錐的體積為()A.B.C.D.3、已知函數(shù)f(x)=8+2x﹣x2,那么()A.f(x)是減函數(shù)B.f(x)在(﹣∞,1]上是減函數(shù)C.f(x)是增函數(shù)D.f(x)在(﹣∞,0]上是增函數(shù)4、98和63的最大公約數(shù)是()A.3B.9C.7D.145、點向量若則實數(shù)的值為()A.5B.6C.7D.86、圓:x2+y2-4x+6y=0和圓:x2+y2-6x=0交于A,B兩點,則AB的垂直平分線的方程是()A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.4x-3y+7=07、婁脕
是第四象限角,tan婁脕=鈭?512
則sin婁脕=(
)
A.15
B.鈭?15
C.513
D.鈭?513
評卷人得分二、填空題(共6題,共12分)8、已知A,B是對立事件,若則P(B)=____.9、函數(shù)的單調遞減區(qū)間是.10、有一道解三角形的題因紙張破損,有一條件不清,且具體如下:在△ABC中,已知B=,求角A.經推斷破損處的條件為三角形一邊的長度,且答案提示A=請將條件補完整.11、若關于的不等式的解集則的值為_________.12、下面給出了解決問題的算法:
S1輸入x
S2若x≤1則執(zhí)行S3;否則執(zhí)行S4
S3使y=2x﹣3
S4使y=x2﹣3x+3
S5輸出y
當輸入的值為____時,輸入值與輸出值相等.13、若函數(shù)y=x2+2(a﹣1)x+2在區(qū)間(﹣∞,4]上單調遞減,則實數(shù)a的取值范圍是____評卷人得分三、證明題(共9題,共18分)14、初中我們學過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設計一種方案,解決問題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.15、已知D是銳角△ABC外接圓劣弧的中點;弦AD與邊BC相交于點E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.16、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.17、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點,DF⊥BE,垂足為F,CF交AD于點G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.18、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個半徑為的圓紙片所覆蓋.19、如圖;過圓O外一點D作圓O的割線DBA,DE與圓O切于點E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.
(1)求證:E為的中點;
(2)若CF=3,DE?EF=,求EF的長.20、如圖,設△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.21、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.22、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評卷人得分四、解答題(共3題,共12分)23、設集合A={x|-1<x≤2};B={x|0<x<3},求A∩B.
24、m為何值時,f(x)=x2+2mx+3m+4
(1)有且僅有一個零點。
(2)有兩個零點且均比-1大.
25、設集合若求實數(shù)的值.評卷人得分五、作圖題(共1題,共7分)26、如圖A、B兩個村子在河CD的同側,A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設管道的費用最省,并求出其費用.評卷人得分六、綜合題(共1題,共5分)27、如圖;Rt△ABC的兩條直角邊AC=3,BC=4,點P是邊BC上的一動點(P不與B重合),以P為圓心作⊙P與BA相切于點M.設CP=x,⊙P的半徑為y.
(1)求證:△BPM∽△BAC;
(2)求y與x的函數(shù)關系式;并確定當x在什么范圍內取值時,⊙P與AC所在直線相離;
(3)當點P從點C向點B移動時;是否存在這樣的⊙P,使得它與△ABC的外接圓相內切?若存在,求出x;y的值;若不存在,請說明理由.
參考答案一、選擇題(共7題,共14分)1、C【分析】【解析】略【解析】【答案】C2、C【分析】【解答】如圖,由于且為球的直徑,所以所以設為球心,連結則又因為取的中點連結則四棱錐的高為的邊上的高,設為則解得而三棱錐的體積.
3、D【分析】【解答】解:∵函數(shù)f(x)=8+2x﹣x2=﹣(x﹣1)2+9的圖象是開口線下的拋物線;對稱軸為x=1;
故f(x)在(﹣∞;0]上是增函數(shù);
故選:D
【分析】由條件利用二次函數(shù)的圖象和性質,可得結論.4、C【分析】【解答】∵98=1×63+35;63=1×35+28,35=1×28+7,28=7×4;
∴98和63的最大公約數(shù)是7.
故選C.
【分析】利用輾轉相除法即可求出。5、C【分析】【解答】∵點∴又且∴y-1=2×3,∴y=7,故選C
【分析】兩個向量設=(x1,y1),=(x2,y2)平行的充要條件是x1y2-x2y1=0容易容易誤寫為x1y1-x2y2=0,尤其可能與隨后要學到的向量垂直的條件混淆,因此要理解并熟記這一公式,并與向量垂直的條件區(qū)分6、C【分析】【解答】圓:x2+y2-4x+6y=0的圓心坐標為(2,-3),圓:x2+y2-6x=0的圓心坐標為(3,0),由題意可得AB的垂直平分線的方程就是兩圓的圓心所在的直線的方程,由兩點式求得AB的垂直平分線的方程是即3x-y-9=0,故答案為C.
【分析】本題主要考查用兩點式求直線方程的方法,判斷AB的垂直平分線的方程就是兩圓的圓心所在的直線的方程,是解題的關鍵,屬于基礎題。7、D【分析】解:隆脽婁脕
是第四象限角,tan婁脕=鈭?512=sin婁脕cos偽sin2婁脕+cos2婁脕=1
隆脿sin婁脕=鈭?513
.
故選D.
根據(jù)tan婁脕=sin婁脕cos偽sin2婁脕+cos2婁脕=1
即可得答案.
三角函數(shù)的基本關系是三角函數(shù)的基本,是高考必考內容.【解析】D
二、填空題(共6題,共12分)8、略
【分析】
已知A,B是對立事件,若則P(B)=1-P(A)=
故答案為.
【解析】【答案】由于A,B是對立事件,若則P(B)=1-P(A).
9、略
【分析】試題分析:因為所以由可得所以函數(shù)的遞減區(qū)間為考點:三角函數(shù)的性質.【解析】【答案】10、略
【分析】試題分析:由正弦定理得:或者先由三角形的內角和定理得到C=75再用正弦定理得故條件可能為:考點:解三角形.【解析】【答案】11、略
【分析】試題分析:由題意得,為方程的兩根,且由得又由得:考點:不等式解集與方程根的關系【解析】【答案】12、3【分析】【解答】解:分析程序中各變量;各語句的作用;
再根據(jù)流程圖所示的順序;可知:
該程序的作用是計算并輸出分段函數(shù)的函數(shù)值.
當輸入的值為x時;輸入值與輸出值相等;
當x>1時,若x2﹣3x+3=x;則x=3或x=1(舍去);
當x≤1時;若2x﹣3=x,則x=3(舍去)
故答案為3.
【分析】分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是計算并輸出分段函數(shù)的函數(shù)值,結合函數(shù)值即可解.13、a≤﹣3【分析】【解答】解:函數(shù)y=x2+2(a﹣1)x+2的圖象是開口朝上,且以直線x=1﹣a為對稱軸的拋物線,若y=x2+2(a﹣1)x+2在區(qū)間(﹣∞;4]上單調遞減;
則1﹣a≥4;
解得:a≤﹣3;
故答案為:a≤﹣3
【分析】若y=x2+2(a﹣1)x+2在區(qū)間(﹣∞,4]上單調遞減,則1﹣a≥4,解得答案.三、證明題(共9題,共18分)14、略
【分析】【分析】(1)過點C作CE⊥AB于點E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;
(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;
則CE=AC?sin(α+β)=bsin(α+β);
∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB?ACsin(α+β)=BD?AD+CD?AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.15、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點;
∴cosC==.
答:cosC的值是.
(3)BF過圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.16、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.17、略
【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.18、略
【分析】【分析】(1)關鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點疊合.
(2)“曲“化“直“.對比(1),應取均分線圈的二點連線段中點作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點,不妨設在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設RQ中點為G,M為線圈上任意一點,連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個線圈.19、略
【分析】【分析】要證E為中點,可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關系可以求出.【解析】【解答】(1)證明:連接OE
OA=OE=>∠OAE=∠OEA
DE切圓O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
?OE∥AD
=>E為的中點.
(2)解:連CE;則∠AEC=90°,設圓O的半徑為x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圓O于E=>△FCE∽△FEA
∴,
∴
即DE?EF=AD?CF
DE?EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC?FA=3x(3+2)=15
∴EF=20、略
【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;
則AC=AE;AB=5DE;
又∵G是AB的中點;
∴AG=ED.
∴ED2=AF?AE;
∴5ED2=AF?AE;
∴AB?ED=AF?AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.21、略
【分析】【分析】構造以重心G為頂點的平行四邊形GBFC,并巧用A、D、F、C四點共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四邊形GBFC是平行四邊形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵過A;G的圓與BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四點共圓;
∴GA;GF=GC?GD;
即GA2=GC?GD.22、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.四、解答題(共3題,共12分)23、略
【分析】
因為集合A={x|-1<x≤2};B={x|0<x<3};
所以A∩B={x|-1<x≤2}∩{x|0<x<3}={x|0<x≤2}.
【解析】【答案】直接利用交集的運算法則求出A∩B即可.
24、略
【分析】
(1)∵f(x)=x2+2mx+3m+4;有且僅有一個零點。
說明二次函數(shù)與x軸只有一個交點;可得。
△=(2m)2-4×(3m+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西安健康工程職業(yè)學院《管理文秘與禮儀》2023-2024學年第一學期期末試卷
- 武漢民政職業(yè)學院《電工技術與電氣控制》2023-2024學年第一學期期末試卷
- 個性化高端導購服務2024協(xié)議
- 2024版在線教育平臺合作協(xié)議3篇
- 2024版反擔保協(xié)議二
- 二零二五版臨時用工崗位合同范本6篇
- 二零二五年度金融科技股票投資委托合同模板3篇
- 二零二五年度食品飲料個人物資采購合同參考文本6篇
- 四川職業(yè)技術學院《稅收理論與實務》2023-2024學年第一學期期末試卷
- 二零二五版城市改造房屋拆遷掛靠管理合同3篇
- 公務員考試工信部面試真題及解析
- GB/T 15593-2020輸血(液)器具用聚氯乙烯塑料
- 2023年上海英語高考卷及答案完整版
- 西北農林科技大學高等數(shù)學期末考試試卷(含答案)
- 金紅葉紙業(yè)簡介-2 -紙品及產品知識
- 《連鎖經營管理》課程教學大綱
- 《畢淑敏文集》電子書
- 頸椎JOA評分 表格
- 員工崗位能力評價標準
- 定量分析方法-課件
- 朱曦編著設計形態(tài)知識點
評論
0/150
提交評論