2024屆浙江省湖州市天略外國(guó)語(yǔ)學(xué)校高三考前全真模擬密卷數(shù)學(xué)試題試卷_第1頁(yè)
2024屆浙江省湖州市天略外國(guó)語(yǔ)學(xué)校高三考前全真模擬密卷數(shù)學(xué)試題試卷_第2頁(yè)
2024屆浙江省湖州市天略外國(guó)語(yǔ)學(xué)校高三考前全真模擬密卷數(shù)學(xué)試題試卷_第3頁(yè)
2024屆浙江省湖州市天略外國(guó)語(yǔ)學(xué)校高三考前全真模擬密卷數(shù)學(xué)試題試卷_第4頁(yè)
2024屆浙江省湖州市天略外國(guó)語(yǔ)學(xué)校高三考前全真模擬密卷數(shù)學(xué)試題試卷_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023屆浙江省湖州市天略外國(guó)語(yǔ)學(xué)校高三考前全真模擬密卷數(shù)學(xué)試題試卷(5)注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的左、右頂點(diǎn)分別是,雙曲線的右焦點(diǎn)為,點(diǎn)在過(guò)且垂直于軸的直線上,當(dāng)?shù)耐饨訄A面積達(dá)到最小時(shí),點(diǎn)恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.2.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知復(fù)數(shù),則的虛部是()A. B. C. D.14.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)P是C的右支上一點(diǎn),連接與y軸交于點(diǎn)M,若(O為坐標(biāo)原點(diǎn)),,則雙曲線C的漸近線方程為()A. B. C. D.5.當(dāng)時(shí),函數(shù)的圖象大致是()A. B.C. D.6.在邊長(zhǎng)為的菱形中,,沿對(duì)角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.7.?dāng)?shù)列滿足:,則數(shù)列前項(xiàng)的和為A. B. C. D.8.如圖,平面與平面相交于,,,點(diǎn),點(diǎn),則下列敘述錯(cuò)誤的是()A.直線與異面B.過(guò)只有唯一平面與平行C.過(guò)點(diǎn)只能作唯一平面與垂直D.過(guò)一定能作一平面與垂直9.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.310.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.11.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或8二、填空題:本題共4小題,每小題5分,共20分。13.已知,是互相垂直的單位向量,若與λ的夾角為60°,則實(shí)數(shù)λ的值是__.14.已知(且)有最小值,且最小值不小于1,則的取值范圍為_(kāi)_________.15.在中,角,,的對(duì)邊分別為,,.若;且,則周長(zhǎng)的范圍為_(kāi)_________.16.已知,滿足約束條件,則的最小值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓:的長(zhǎng)半軸長(zhǎng)為,點(diǎn)(為橢圓的離心率)在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)如圖,為直線上任一點(diǎn),過(guò)點(diǎn)橢圓上點(diǎn)處的切線為,,切點(diǎn)分別,,直線與直線,分別交于,兩點(diǎn),點(diǎn),的縱坐標(biāo)分別為,,求的值.18.(12分)如圖,在直角中,,通過(guò)以直線為軸順時(shí)針旋轉(zhuǎn)得到().點(diǎn)為斜邊上一點(diǎn).點(diǎn)為線段上一點(diǎn),且.(1)證明:平面;(2)當(dāng)直線與平面所成的角取最大值時(shí),求二面角的正弦值.19.(12分)設(shè),,其中.(1)當(dāng)時(shí),求的值;(2)對(duì),證明:恒為定值.20.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點(diǎn),SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.21.(12分)從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.22.(10分)已知函數(shù)(為常數(shù))(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

點(diǎn)的坐標(biāo)為,,展開(kāi)利用均值不等式得到最值,將點(diǎn)代入雙曲線計(jì)算得到答案.【詳解】不妨設(shè)點(diǎn)的坐標(biāo)為,由于為定值,由正弦定理可知當(dāng)取得最大值時(shí),的外接圓面積取得最小值,也等價(jià)于取得最大值,因?yàn)椋?,所以,?dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,此時(shí)最大,此時(shí)的外接圓面積取最小值,點(diǎn)的坐標(biāo)為,代入可得,.所以雙曲線的方程為.故選:【點(diǎn)睛】本題考查了求雙曲線方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.2.B【解析】

根據(jù)誘導(dǎo)公式化簡(jiǎn)再分析即可.【詳解】因?yàn)?所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點(diǎn)睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運(yùn)用,屬于基礎(chǔ)題.3.C【解析】

化簡(jiǎn)復(fù)數(shù),分子分母同時(shí)乘以,進(jìn)而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點(diǎn)睛】本小題主要考查復(fù)數(shù)的乘法、除法運(yùn)算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.4.C【解析】

利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程?!驹斀狻吭O(shè),,由,與相似,所以,即,又因?yàn)?,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點(diǎn)睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運(yùn)算求解能力。5.B【解析】由,解得,即或,函數(shù)有兩個(gè)零點(diǎn),,不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個(gè)極大值點(diǎn),不成立,排除,故選B.【方法點(diǎn)晴】本題通過(guò)對(duì)多個(gè)圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導(dǎo)數(shù)的應(yīng)用以及數(shù)學(xué)化歸思想,屬于難題.這類題型也是近年高考常見(jiàn)的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)較強(qiáng)、考查知識(shí)點(diǎn)較多,但是并不是無(wú)路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以及時(shí)函數(shù)圖象的變化趨勢(shì),利用排除法,將不合題意選項(xiàng)一一排除.6.A【解析】

畫(huà)圖取的中點(diǎn)M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點(diǎn)M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點(diǎn)睛】此題考查三棱錐的外接球表面積,關(guān)鍵點(diǎn)是通過(guò)幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.7.A【解析】分析:通過(guò)對(duì)an﹣an+1=2anan+1變形可知,進(jìn)而可知,利用裂項(xiàng)相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項(xiàng)的和為,故選A.點(diǎn)睛:裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見(jiàn)的裂項(xiàng)技巧:(1);(2);(3);(4);此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.8.D【解析】

根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對(duì)選項(xiàng)中的命題判斷.【詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過(guò)只有唯一平面與平行,故正確.C.根據(jù)過(guò)一點(diǎn)有且只有一個(gè)平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過(guò)不一定能作一平面與垂直,故錯(cuò)誤.故選:D【點(diǎn)睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.9.A【解析】

根據(jù)正切函數(shù)的圖象求出A、B兩點(diǎn)的坐標(biāo),再求出向量的坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時(shí)解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點(diǎn)睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運(yùn)算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標(biāo),再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)果,屬于簡(jiǎn)單題.10.B【解析】

首先求得兩曲線的交點(diǎn)坐標(biāo),據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結(jié)合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項(xiàng).【點(diǎn)睛】本題主要考查定積分的概念與計(jì)算,屬于中等題.11.B【解析】

利用充分必要條件的定義可判斷兩個(gè)條件之間的關(guān)系.【詳解】若,則,故或,當(dāng)時(shí),直線,直線,此時(shí)兩條直線平行;當(dāng)時(shí),直線,直線,此時(shí)兩條直線平行.所以當(dāng)時(shí),推不出,故“”是“”的不充分條件,當(dāng)時(shí),可以推出,故“”是“”的必要條件,故選:B.【點(diǎn)睛】本題考查兩條直線的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來(lái)考慮,后者依據(jù)兩個(gè)條件之間的推出關(guān)系,本題屬于中檔題.12.B【解析】

根據(jù)函數(shù)的對(duì)稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對(duì)稱,又,所以或,所以的值是7或3.故選:B.【點(diǎn)睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對(duì)稱性問(wèn)題,屬基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)平面向量的數(shù)量積運(yùn)算與單位向量的定義,列出方程解方程即可求出λ的值.【詳解】解:由題意,設(shè)(1,0),(0,1),則(,﹣1),λ(1,λ);又夾角為60°,∴()?(λ)λ=2cos60°,即λ,解得λ.【點(diǎn)睛】本題考查了單位向量和平面向量數(shù)量積的運(yùn)算問(wèn)題,是中檔題.14.【解析】

真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點(diǎn)睛】本題考查對(duì)數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.15.【解析】

先求角,再用余弦定理找到邊的關(guān)系,再用基本不等式求的范圍即可.【詳解】解:所以三角形周長(zhǎng)故答案為:【點(diǎn)睛】考查正余弦定理、基本不等式的應(yīng)用以及三條線段構(gòu)成三角形的條件;基礎(chǔ)題.16.【解析】

作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫(huà)出可行域易知在點(diǎn)處取最小值為.故答案為:【點(diǎn)睛】本題考查簡(jiǎn)單線性規(guī)劃的最值,考查數(shù)形結(jié)合思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2).【解析】

(1)因?yàn)辄c(diǎn)在橢圓上,所以,然后,利用,,得出,進(jìn)而求解即可(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,直線的方程為,分別聯(lián)立方程:和,利用韋達(dá)定理,再利用,,即可求出的值【詳解】(1)由橢圓的長(zhǎng)半軸長(zhǎng)為,得.因?yàn)辄c(diǎn)在橢圓上,所以.又因?yàn)椋?,所以,所以(舍)?故橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,直線的方程為.據(jù)得.據(jù)題意,得,得,同理,得,所以.又可求,得,,所以.【點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程的求解以及聯(lián)立方程求定值的問(wèn)題,聯(lián)立方程求定值的關(guān)鍵在于利用韋達(dá)定理進(jìn)行消參,屬于中檔題18.(1)見(jiàn)解析;(2)【解析】

(1)先算出的長(zhǎng)度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應(yīng)最小,可得為中點(diǎn),然后建系分別求出平面的法向量即可算得二面角的余弦值,進(jìn)一步得到正弦值.【詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標(biāo)原點(diǎn),以,,的方向?yàn)?,,軸的正方向,建立空間直角坐標(biāo)系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時(shí),即,點(diǎn)為中點(diǎn).,,,,,,,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,同理,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.19.(1)1(2)1【解析】分析:(1)當(dāng)時(shí)可得,可得.(2)先得到關(guān)系式,累乘可得,從而可得,即為定值.詳解:(1)當(dāng)時(shí),,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點(diǎn)睛:本題考查組合數(shù)的有關(guān)運(yùn)算,解題時(shí)要注意所給出的的定義,并結(jié)合組合數(shù)公式求解.由于運(yùn)算量較大,解題時(shí)要注意運(yùn)算的準(zhǔn)確性,避免出現(xiàn)錯(cuò)誤.20.(I)證明見(jiàn)解析;(II)1【解析】

(I)過(guò)D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過(guò)點(diǎn)D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計(jì)算夾角得到答案.【詳解】(I)過(guò)D作DE⊥BC于E,連接SE,根據(jù)角度的垂直關(guān)系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據(jù)余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過(guò)點(diǎn)D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點(diǎn)睛】本題考查了線線垂直,線面夾角,意在考查學(xué)生的計(jì)算能力和空間想象能力.21.(1);(2)①證明見(jiàn)解析;②能,.【解析】

(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)①設(shè),,寫(xiě)出切線的方程,解方程組求出點(diǎn)的坐標(biāo).設(shè)點(diǎn),直線AB的方程,代入拋物線方程,利用韋達(dá)定理得到點(diǎn)的坐標(biāo),寫(xiě)出點(diǎn)的坐標(biāo),,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點(diǎn)Q的坐標(biāo).【詳解】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論