下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
雙基限時練(六)1.cos300°=()A.-eq\f(\r(3),2) B.-eq\f(1,2)C.eq\f(1,2) D.eq\f(\r(3),2)答案C2.若sin(3π+α)=-eq\f(1,2),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α))等于()A.-eq\f(1,2) B.eq\f(1,2)C.eq\f(\r(3),2) D.-eq\f(\r(3),2)解析∵sin(3π+α)=sin(π+α)=-sinα=-eq\f(1,2),∴sinα=eq\f(1,2).∴coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α))=coseq\b\lc\[\rc\](\a\vs4\al\co1(4π-\f(π,2)+α))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-sinα=-eq\f(1,2).答案A3.sin(π-2)-coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-2))化簡的結(jié)果是()A.0 B.-1C.2sin2 D.-2sin2解析sin(π-2)-coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-2))=sin2-sin2=0.答案A4.若tan(7π+α)=a,則eq\f(sinα-3π+cosπ-α,sin-α-cosπ+α)的值為()A.eq\f(a-1,a+1) B.eq\f(a+1,a-1)C.-1 D.1解析由tan(7π+α)=a,得tanα=a,∴eq\f(sinα-3π+cosπ-α,sin-α-cosπ+α)=eq\f(-sin3π-α-cosα,-sinα+cosα)=eq\f(sinα+cosα,sinα-cosα)=eq\f(tanα+1,tanα-1)=eq\f(a+1,a-1).答案B5.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))=eq\f(1,3),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))的值等于()A.eq\f(2\r(2),3) B.-eq\f(2\r(2),3)C.eq\f(1,3) D.-eq\f(1,3)解析∵eq\f(π,4)+α-eq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))=eq\f(π,2),∴coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))=coseq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)+\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))))=-sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))=-eq\f(1,3).故選D.答案D6.A,B,C為△ABC的三個內(nèi)角,下列關(guān)系式中不成立的是()①cos(A+B)=cosC②coseq\f(B+C,2)=sineq\f(A,2)③tan(A+B)=-tanC④sin(2A+B+C)=sinA.①② B.③④C.①④ D.②③解析由于cos(A+B)=-cosC,所以①錯;coseq\f(B+C,2)=coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-\f(A,2)))=sineq\f(A,2),所以②正確;tan(A+B)=tan(π-C)=-tanC,故③正確;sin(2A+B+C)=sin(π+A)=-sinA,故④錯.所以選C.答案C7.若θ∈(0,π),cos(π+θ)=eq\f(3,5),則sinθ=__________.解析∵cos(π+θ)=eq\f(3,5),∴cosθ=-eq\f(3,5),故θ∈eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π)),∴sinθ=eq\f(4,5).答案eq\f(4,5)8.化簡:sin(450°-α)-sin(180°-α)+cos(450°-α)+cos(180°-α)=________.解析原式=sin(90°-α)-sinα+cos(90°-α)-cosα=cosα-sinα+sinα-cosα=0.答案09.化簡:sin(-eq\f(23,6)π)+coseq\f(13π,7)·tan4π-coseq\f(13,3)π=________.解析原式=-sineq\b\lc\(\rc\)(\a\vs4\al\co1(4π-\f(π,6)))+coseq\b\lc\(\rc\)(\a\vs4\al\co1(2π-\f(π,7)))·0-coseq\b\lc\(\rc\)(\a\vs4\al\co1(4π+\f(π,3)))=sineq\f(π,6)+0-coseq\f(π,3)=eq\f(1,2)-eq\f(1,2)=0.答案010.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2))),則eq\f(sinπ-α+cosπ+α,5cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)-α))+3sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α)))=________.解析∵coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2))),∴sinα=2cosα.原式=eq\f(sinα-cosα,5sinα-3cosα)=eq\f(2cosα-cosα,10cosα-3cosα)=eq\f(1,7).答案eq\f(1,7)11.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))=eq\f(1,2),求coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)+α))·sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,3)+α))的值.解coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)+α))·sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,3)+α))=coseq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))))·sineq\b\lc\[\rc\](\a\vs4\al\co1(π-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))))=sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))·sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))=eq\f(1,2)×eq\f(1,2)=eq\f(1,4).12.在△ABC中,sineq\f(A+B-C,2)=sineq\f(A-B+C,2),試推斷△ABC的外形.解∵A+B+C=π,∴A+B-C=π-2C,A-B+C=π-2B∵sineq\f(A+B-C,2)=sineq\f(A-B+C,2),∴sineq\f(π-2B,2)=sineq\f(π-2C,2).∴sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-B))=sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-C)).∴cosB=cosC.∴B=C.∴△ABC為等腰三角形.13.已知α是第三象限的角,f(α)=eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))tanπ-α,tan-α-πsin-α-π)(1)化簡f(α);(2)若coseq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))=eq\f(1,5),求f(α)的值.解(1)f(α)=eq\f(-cosα·sinα·-tanα,-tanα·sinα)=-cosα.(2)∵cose
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源汽車批量訂購合同4篇
- 2025年度體育賽事代理運營管理合同樣本4篇
- 2025年度生態(tài)停車場車位購置協(xié)議4篇
- 生物活性營養(yǎng)土項目可行性研究報告模板范文(立項備案項目申請)
- 2025年新生入學(xué)教育法律協(xié)議書(綜合服務(wù))3篇
- 2025年度個人信用評分服務(wù)協(xié)議3篇
- 2025年度個人股權(quán)交易合同范本:股權(quán)轉(zhuǎn)讓流程與稅務(wù)籌劃4篇
- 2025年度企業(yè)項目合作協(xié)議范本4篇
- 2025年浙江澤興環(huán)保工程有限公司招聘筆試參考題庫含答案解析
- 二零二五年度林業(yè)生態(tài)恢復(fù)苗木采購合同文本4篇
- 安徽省合肥市包河區(qū)2023-2024學(xué)年九年級上學(xué)期期末化學(xué)試題
- 《酸堿罐區(qū)設(shè)計規(guī)范》編制說明
- PMC主管年終總結(jié)報告
- 售樓部保安管理培訓(xùn)
- 倉儲培訓(xùn)課件模板
- 2025屆高考地理一輪復(fù)習(xí)第七講水循環(huán)與洋流自主練含解析
- GB/T 44914-2024和田玉分級
- 2024年度企業(yè)入駐跨境電商孵化基地合作協(xié)議3篇
- 《形勢與政策》課程標(biāo)準(zhǔn)
- 2023年海南省公務(wù)員錄用考試《行測》真題卷及答案解析
- 橋梁監(jiān)測監(jiān)控實施方案
評論
0/150
提交評論