下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第2講平面對量基本定理及坐標表示基礎(chǔ)鞏固題組(建議用時:40分鐘)一、填空題1.(2021·泰州檢測)已知在?ABCD中,eq\o(AD,\s\up6(→))=(2,8),eq\o(AB,\s\up6(→))=(-3,4),則eq\o(AC,\s\up6(→))=________.解析由于四邊形ABCD是平行四邊形,所以eq\o(AC,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))=(-1,12).答案(-1,12)2.(2022·福建卷)在下列向量組中,可以把向量a=(3,2)表示出來的是________(填序號).①e1=(0,0),e2=(1,2);②e1=(-1,2),e2=(5,-2);③e1=(3,5),e2=(6,10);④e1=(2,-3),e2=(-2,3).解析由題意知,①中e1=0,③,④中兩向量均共線,都不符合基底條件,只有②適合.答案②3.(2022·青島質(zhì)量檢測)已知向量a=(-1,2),b=(3,m),m∈R,則“m=-6”是“a∥(a+b)”的________條件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).解析由題意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,所以m=-6,則“m=-6”是“a∥(a+b)”的充要條件.答案充要4.已知a=(1,1),b=(1,-1),c=(-1,2),則c=________(用a,b表示).解析設(shè)c=λa+μb,∴(-1,2)=λ(1,1)+μ(1,-1),∴eq\b\lc\{\rc\(\a\vs4\al\co1(-1=λ+μ,,2=λ-μ,))∴eq\b\lc\{\rc\(\a\vs4\al\co1(λ=\f(1,2),,μ=-\f(3,2),))∴c=eq\f(1,2)a-eq\f(3,2)b.答案eq\f(1,2)a-eq\f(3,2)b5.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且u∥v,則實數(shù)x的值為________.解析由于a=(1,2),b=(x,1),u=a+2b,v=2a-b,所以u=(1,2)+2(x,1)=(2x+1,4),v=2(1,2)-(x,1)=(2-x,3).又由于u∥v,所以3(2x+1)-4(2-x)=0,即10x=5,解得x=eq\f(1,2).答案eq\f(1,2)6.若三點A(2,2),B(a,0),C(0,b)(ab≠0)共線,則eq\f(1,a)+eq\f(1,b)的值為________.解析eq\o(AB,\s\up6(→))=(a-2,-2),eq\o(AC,\s\up6(→))=(-2,b-2),依題意,有(a-2)(b-2)-4=0,即ab-2a-2b=0,所以eq\f(1,a)+eq\f(1,b)=eq\f(1,2).答案eq\f(1,2)7.向量a,b,c在正方形網(wǎng)格中的位置如圖所示,若c=λa+μb(λ,μ∈R),則eq\f(λ,μ)=________.解析以向量a和b的交點為原點建立如圖所示的平面直角坐標系(設(shè)每個小正方形邊長為1),則A(1,-1),B(6,2),C(5,-1),∴a=eq\o(AO,\s\up6(→))=(-1,1),b=eq\o(OB,\s\up6(→))=(6,2),c=eq\o(BC,\s\up6(→))=(-1,-3).∵c=λa+μb,∴(-1,-3)=λ(-1,1)+μ(6,2),即-λ+6μ=-1,λ+2μ=-3,解得λ=-2,μ=-eq\f(1,2),∴eq\f(λ,μ)=4.答案48.(2021·蘇、錫、常、鎮(zhèn)四市調(diào)研)如圖,在△ABC中,BO為邊AC上的中線,eq\o(BG,\s\up6(→))=2eq\o(GO,\s\up6(→)),若eq\o(CD,\s\up6(→))∥eq\o(AG,\s\up6(→)),且eq\o(AD,\s\up6(→))=eq\f(1,5)eq\o(AB,\s\up6(→))+λeq\o(AC,\s\up6(→))(λ∈R),則λ的值為________.解析由于eq\o(CD,\s\up6(→))∥eq\o(AG,\s\up6(→)),由向量共線定理可得存在實數(shù)k,使得eq\o(CD,\s\up6(→))=keq\o(AG,\s\up6(→)).又eq\o(CD,\s\up6(→))=eq\o(AD,\s\up6(→))-eq\o(AC,\s\up6(→))=eq\f(1,5)eq\o(AB,\s\up6(→))+(λ-1)eq\o(AC,\s\up6(→)),又由BO是邊AC上的中線,eq\o(BG,\s\up6(→))=2eq\o(GO,\s\up6(→))得點G為△ABC的重心,所以eq\o(AG,\s\up6(→))=eq\f(1,3)(eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))),所以eq\f(1,5)eq\o(AB,\s\up6(→))+(λ-1)eq\o(AC,\s\up6(→))=eq\f(k,3)(eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))),由平面對量的基本定理可得eq\b\lc\{\rc\(\a\vs4\al\co1(\f(1,5)=\f(k,3),,λ-1=\f(k,3),))解得λ=eq\f(6,5).答案eq\f(6,5)二、解答題9.已知A(-2,4),B(3,-1),C(-3,-4).設(shè)eq\o(AB,\s\up6(→))=a,eq\o(BC,\s\up6(→))=b,eq\o(CA,\s\up6(→))=c,且eq\o(CM,\s\up6(→))=3c,eq\o(CN,\s\up6(→))=-2b,(1)求3a+b-3c;(2)求滿足a=mb+nc的實數(shù)m,n;(3)求M,N的坐標及向量eq\o(MN,\s\up6(→))的坐標.解由已知得a=(5,-5),b=(-6,-3),c=(1,8).(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb+nc=(-6m+n,-3m+8n),∴eq\b\lc\{\rc\(\a\vs4\al\co1(-6m+n=5,,-3m+8n=-5,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(m=-1,,n=-1.))(3)設(shè)O為坐標原點,∵eq\o(CM,\s\up6(→))=eq\o(OM,\s\up6(→))-eq\o(OC,\s\up6(→))=3c,∴eq\o(OM,\s\up6(→))=3c+eq\o(OC,\s\up6(→))=(3,24)+(-3,-4)=(0,20),∴M(0,20).又∵eq\o(CN,\s\up6(→))=eq\o(ON,\s\up6(→))-eq\o(OC,\s\up6(→))=-2b,∴eq\o(ON,\s\up6(→))=-2b+eq\o(OC,\s\up6(→))=(12,6)+(-3,-4)=(9,2),∴N(9,2).∴eq\o(MN,\s\up6(→))=(9,-18).10.如圖,在平行四邊形ABCD中,M,N分別為DC,BC的中點,已知eq\o(AM,\s\up6(→))=c,eq\o(AN,\s\up6(→))=d,試用c,d表示eq\o(AB,\s\up6(→)),eq\o(AD,\s\up6(→)).解法一設(shè)eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,則a=eq\o(AN,\s\up6(→))+eq\o(NB,\s\up6(→))=d+eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)b)),①b=eq\o(AM,\s\up6(→))+eq\o(MD,\s\up6(→))=c+eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)a)).②將②代入①,得a=d+eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))eq\b\lc\[\rc\](\a\vs4\al\co1(c+\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)a)))),∴a=eq\f(4,3)d-eq\f(2,3)c=eq\f(2,3)(2d-c),③將③代入②,得b=c+eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))×eq\f(2,3)(2d-c)=eq\f(2,3)(2c-d).∴eq\o(AB,\s\up6(→))=eq\f(2,3)(2d-c),eq\o(AD,\s\up6(→))=eq\f(2,3)(2c-d).法二設(shè)eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b.因M,N分別為CD,BC的中點,所以eq\o(BN,\s\up6(→))=eq\f(1,2)b,eq\o(DM,\s\up6(→))=eq\f(1,2)a,因而eq\b\lc\{\rc\(\a\vs4\al\co1(c=b+\f(1,2)a,,d=a+\f(1,2)b))?eq\b\lc\{\rc\(\a\vs4\al\co1(a=\f(2,3)2d-c,,b=\f(2,3)2c-d,))即eq\o(AB,\s\up6(→))=eq\f(2,3)(2d-c),eq\o(AD,\s\up6(→))=eq\f(2,3)(2c-d).力量提升題組(建議用時:25分鐘)1.在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)向量p=(a+c,b),q=(b-a,c-a),若p∥q,則角C的大小為________.解析由p∥q,得(a+c)(c-a)=b(b-a),整理得b2+a2-c2=ab,由余弦定理得cosC=eq\f(a2+b2-c2,2ab)=eq\f(1,2),又0°<C<180°,∴C=60°.答案60°2.在平面直角坐標系xOy中,已知A(1,0),B(0,1),C為坐標平面內(nèi)第一象限內(nèi)一點且∠AOC=eq\f(π,4),且|OC|=2,若eq\o(OC,\s\up6(→))=λeq\o(OA,\s\up6(→))+μeq\o(OB,\s\up6(→)),則λ+μ=________.解析由于|OC|=2,∠AOC=eq\f(π,4),所以C(eq\r(2),eq\r(2)),又eq\o(OC,\s\up6(→))=λeq\o(OA,\s\up6(→))+μeq\o(OB,\s\up6(→)),所以(eq\r(2),eq\r(2))=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=eq\r(2),λ+μ=2eq\r(2).答案2eq\r(2)3.已知向量eq\o(OA,\s\up6(→))=(3,-4),eq\o(OB,\s\up6(→))=(0,-3),eq\o(OC,\s\up6(→))=(5-m,-3-m),若點A,B,C能構(gòu)成三角形,則實數(shù)m滿足的條件是________.解析由題意得eq\o(AB,\s\up6(→))=(-3,1),eq\o(AC,\s\up6(→))=(2-m,1-m),若A,B,C能構(gòu)成三角形,則eq\o(AB,\s\up6(→)),eq\o(AC,\s\up6(→))不共線,則-3×(1-m)≠1×(2-m),解得m≠eq\f(5,4).答案m≠eq\f(5,4)4.如圖,已知點A(1,0),B(0,2),C(-1,-2),求以A,B,C為頂點的平行四邊形的第四個頂點D的坐標.解如圖所示,以A,B,C為頂點的平行四邊形可以有三種狀況:①?ABCD;②?ADBC;③?ABDC.設(shè)D的坐標為(x,y),①若是?ABCD,則由eq\o(AB,\s\up6(→))=eq\o(DC,\s\up6(→)),得(0,2)-(1,0)=(-1,-2)-(x,y),即(-1,2)=(-1-x,-2-y),∴eq\b\lc\{\rc\(\a\vs4\al\co1(-1-x=-1,,-2-y=2,))∴x=0,y=-4.∴D點的坐標為(0,-4)(如圖中所示的D1).②若是?ADBC,由eq\o(CB,\s\up6(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東行政職業(yè)學院《珠寶首飾設(shè)計基礎(chǔ)》2023-2024學年第一學期期末試卷
- 廣東工程職業(yè)技術(shù)學院《化工熱力學實驗》2023-2024學年第一學期期末試卷
- 廣東第二師范學院《國際商務溝通》2023-2024學年第一學期期末試卷
- 廣東財貿(mào)職業(yè)學院《電競解說能力訓練》2023-2024學年第一學期期末試卷
- 幼兒安全頭盔課件下載
- 《報關(guān)與報檢實務》課件
- 廣東白云學院《中國城市發(fā)展與規(guī)劃史》2023-2024學年第一學期期末試卷
- 廣安職業(yè)技術(shù)學院《機械設(shè)計實驗》2023-2024學年第一學期期末試卷
- 贛州職業(yè)技術(shù)學院《互聯(lián)網(wǎng)+醫(yī)療》2023-2024學年第一學期期末試卷
- 變電工培訓課件
- 公路工程質(zhì)量與安全管理課件
- 計算機基礎(chǔ)知識整理課件
- 高一數(shù)學必修2《事件的關(guān)系和運算》課件
- 四年級道德與法治試卷分析范文(通用5篇)
- 封條模板A4直接打印版
- 電解銅箔制造工藝簡介
- 埋針治療評分標準
- 運維服務目錄
- 山東省腫瘤醫(yī)院放療危及器官劑量限值
- T∕CGCC 8-2017 自熱方便菜肴制品
- 軟膠囊研制手冊
評論
0/150
提交評論