2025年蘇教版高一數(shù)學上冊階段測試試卷_第1頁
2025年蘇教版高一數(shù)學上冊階段測試試卷_第2頁
2025年蘇教版高一數(shù)學上冊階段測試試卷_第3頁
2025年蘇教版高一數(shù)學上冊階段測試試卷_第4頁
2025年蘇教版高一數(shù)學上冊階段測試試卷_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年蘇教版高一數(shù)學上冊階段測試試卷246考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共5題,共10分)1、函數(shù)y=ax-2(a>0,a≠1)的圖象必經(jīng)過點()A.(0,1)B.(1,1)C.(2,0)D.(2,1)2、設全集U=R,集合A、B滿足如圖所示的關(guān)系,且A={x|x2﹣2x﹣3≤0};陰影部分表示的集合為{x|﹣1≤x<1},則集合B可以是()

A.{x|1<x<3}B.{x|1<x≤3}C.{x|1≤x<3}D.{x|1≤x≤3}3、已知f(x)=是奇函數(shù),那么實數(shù)a的值等于()A.1B.-1C.0D.±14、已知函數(shù)f(x)滿足:x≥4,則f(x)=當x<4時f(x)=f(x+1),則=()A.B.C.D.5、圓的一條直徑的兩個端點是(2,0),(2,-2),則此圓的方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x+2)2+(y+1)2=1評卷人得分二、填空題(共6題,共12分)6、函數(shù)的定義域為____.7、將一張坐標紙折疊一次,使得點(3,-2)與點(-1,2)重合,點(7,3)與點重合,則8、已知函數(shù)()的圖象恒過定點A,若點A也在函數(shù)的圖象上,則=____.9、【題文】若“”是“”的必要不充分條件,則的最大值為____.10、【題文】設表示不超過圖片的最大整數(shù),如若函數(shù)(),則的值域為__________.11、數(shù)列{an}的首項為1,數(shù)列{bn}為等比數(shù)列且bn=若b10b11=2,則a21=____.評卷人得分三、證明題(共7題,共14分)12、如圖;過圓O外一點D作圓O的割線DBA,DE與圓O切于點E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.

(1)求證:E為的中點;

(2)若CF=3,DE?EF=,求EF的長.13、如圖,設△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.14、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.15、如圖;已知AB是⊙O的直徑,P是AB延長線上一點,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:

(1)AD=AE

(2)PC?CE=PA?BE.16、初中我們學過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設計一種方案,解決問題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.17、如圖;過圓O外一點D作圓O的割線DBA,DE與圓O切于點E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.

(1)求證:E為的中點;

(2)若CF=3,DE?EF=,求EF的長.18、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評卷人得分四、解答題(共1題,共10分)19、如圖,雙曲線與拋物線x2=3(y+m)相交于A(x1,y1),B(-x1,y1),C(-x2,y2)D(x2,y2),(x1>0,x2>0);直線AC;BD的交點為P(0,p).

(Ⅰ)試用m表示x1x2;

(Ⅱ)當m變化時;求p的取值范圍.

評卷人得分五、計算題(共3題,共24分)20、己知方程x2-x-1=0的根是方程x6-px2+q=0的根,則p=____,q=____.21、如圖,在矩形ABCD中,AB=6,AD=4,E是AD邊上一點(點E與A、D不重合).BE的垂直平分線交AB于M;交DC于N.

(1)設AE=x;試把AM用含x的代數(shù)式表示出來;

(2)設AE=x,四邊形ADNM的面積為S.寫出S關(guān)于x的函數(shù)關(guān)系式.22、(2008?寧德)如圖,將矩形紙ABCD的四個角向內(nèi)折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,若EH=3厘米,EF=4厘米,則邊AD的長是____厘米.評卷人得分六、綜合題(共4題,共36分)23、如圖,四邊形ABCD是菱形,點D的坐標是(0,),以點C為頂點的拋物線y=ax2+bx+c恰好經(jīng)過x軸上A;B兩點.

(1)求A;B,C三點的坐標;

(2)求經(jīng)過A,B,C三點的拋物線的解析式.24、二次函數(shù)的圖象的頂點坐標是,它與x軸的一個交點B的坐標是(-2,0),另一個交點的是C,它與y軸相交于D,O為坐標原點.試問:y軸上是否存在點P,使得△POB∽△DOC?若存在,試求出過P、B兩點的直線的解析式;若不存在,說明理由.25、已知拋物線Y=x2-(m2+4)x-2m2-12

(1)證明:不論m取什么實數(shù);拋物線必與x有兩個交點。

(2)m為何值時;x軸截拋物線的弦長L為12?

(3)m取什么實數(shù),弦長最小,最小值是多少?26、已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中實數(shù)a、b、c滿足a>b>c,a+b+c=0.

(1)求證:兩函數(shù)的圖象相交于不同的兩點A;B;

(2)求線段AB在x軸上的射影A1B1長的取值范圍.參考答案一、選擇題(共5題,共10分)1、D【分析】試題分析:本題考查函數(shù)過特殊點,解題的關(guān)鍵是掌握指數(shù)函數(shù)的性質(zhì),屬于基礎(chǔ)題目.令x-2=0,即x=2時,y=1,所以圖象必經(jīng)過點(2,1).考點:指數(shù)函數(shù)的單調(diào)性與特殊點.【解析】【答案】D2、D【分析】【解答】解:陰影部分為集合A∩?UB;

A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3};

若B={x|1<x<3},則?UB={x|x≥3或x≤1},則A∩?UB={x|﹣1≤x≤1或x=3};不滿足條件.

若B={x|1<x≤3},則?UB={x|x>3或x≤1},則A∩?UB={x|﹣1≤x≤1};不滿足條件.

若B={x|1≤x<3},則?UB={x|x≥3或x<1},則A∩?UB={x|﹣1≤x<1或x=3};不滿足條件.

若B={x|1≤x≤3},則?UB={x|x>3或x<1},則A∩?UB={x|﹣1≤x<1};滿足條件.

故選:D.

【分析】求出陰影部分對應的結(jié)合,結(jié)合集合的基本運算進行求解即可.3、A【分析】【解答】解:∵函數(shù)f(x)是R上的奇函數(shù),∴f(0)=0,∴解得a=1.

故選A.

【分析】由函數(shù)f(x)是R上的奇函數(shù),可得f(0)=0,進而求出答案.4、A【分析】【解答】由題意易知:因為所以=

【分析】熟練掌握對數(shù)和指數(shù)冪的運算,是做本題的前提條件。屬于基礎(chǔ)題型。在計算時一定要認真、仔細,避免出現(xiàn)計算錯誤!5、B【分析】解:圓的圓心為線段的中點(2;-1),半徑為1;

∴要求的圓的方程為(x-2)2+(y+1)2=1;

故選:B.

由條件求得線段AB的中點C的坐標;即為所求的圓心坐標,再求得AC的長,即為所求圓的半徑,從而求得要求的圓的方程.

本題主要考查求圓的標準方程的方法,求出圓心坐標和半徑的值,是解題的關(guān)鍵,屬于基礎(chǔ)題.【解析】【答案】B二、填空題(共6題,共12分)6、略

【分析】

應該滿足

即1<x≤2

所以函數(shù)的定義域為(1;2]

故答案為:(1;2]

【解析】【答案】滿足偶次根式的被開方數(shù)大于等于0;對數(shù)的真數(shù)大于0,解不等式組即可求出所求.

7、略

【分析】試題分析:設折痕所在的直線為直線l,則點(3,-2)與點(-1,2)關(guān)于直線l對稱,從而求出直線l的方程為同理點(7,3)與點也關(guān)于直線l對稱,可得解得因此答案為24.考點:直線的方程及其位置關(guān)系的判斷【解析】【答案】248、略

【分析】【解析】試題分析:根據(jù)對數(shù)函數(shù)的性質(zhì)知函數(shù)()的圖象恒過定點因為點A在函數(shù)的圖象上,所以考點:本小題主要考查對數(shù)過定點和指數(shù)、對數(shù)的運算.【解析】【答案】9、略

【分析】【解析】;

試題分析:由可得x<-1或x>3.又因為x<-1或x>3是的必要不充分條件.所以即的最大值為-1.所以填-1.

考點:1.二次不等式的解法.2.必要不充分條件的意義.【解析】【答案】-1.10、略

【分析】【解析】略【解析】【答案】11、1024【分析】【解答】解:由bn=且a1=1;得。

a3=a2b2=b1b2.

a4=a3b3=b1b2b3.

an=b1b2bn﹣1.

∴a21=b1b2b20.

∵數(shù)列{bn}為等比數(shù)列;

∴a21=(b1b20)(b2b19)(b10b11)=.

故答案為:1024.

【分析】由bn=且a1=1,通過變形轉(zhuǎn)化,把數(shù)列{an}的項用數(shù)列{bn}中的項表示,然后利用等比數(shù)列的性質(zhì)求解.三、證明題(共7題,共14分)12、略

【分析】【分析】要證E為中點,可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE

OA=OE=>∠OAE=∠OEA

DE切圓O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

?OE∥AD

=>E為的中點.

(2)解:連CE;則∠AEC=90°,設圓O的半徑為x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圓O于E=>△FCE∽△FEA

∴,

即DE?EF=AD?CF

DE?EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC?FA=3x(3+2)=15

∴EF=13、略

【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;

則AC=AE;AB=5DE;

又∵G是AB的中點;

∴AG=ED.

∴ED2=AF?AE;

∴5ED2=AF?AE;

∴AB?ED=AF?AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.14、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.15、略

【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;

即可得到結(jié)論;

(2)根據(jù)三角形相似的判定易證Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,

∵PC是⊙O的切線;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB為⊙O的直徑;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC?CE=PA?BE.16、略

【分析】【分析】(1)過點C作CE⊥AB于點E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.17、略

【分析】【分析】要證E為中點,可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE

OA=OE=>∠OAE=∠OEA

DE切圓O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

?OE∥AD

=>E為的中點.

(2)解:連CE;則∠AEC=90°,設圓O的半徑為x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圓O于E=>△FCE∽△FEA

∴,

即DE?EF=AD?CF

DE?EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC?FA=3x(3+2)=15

∴EF=18、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.四、解答題(共1題,共10分)19、略

【分析】

消掉x可得y的二次方程,此時有△>0,而x可用y表示,從而用韋達定理可表示出x1x2;

(Ⅱ)由向量=(x1,y1-p)與=(-x2,y2-p)共線,得x1(y2-p)+x2(y1-p)=0,從而可用x1,x2表示出p;由(Ⅰ)的結(jié)論可把p用m表示出來,根據(jù)m的范圍可得p的范圍;

【解析】

(Ⅰ)依題意;A;B、C、D四點坐標是下面方程組的【解析】

消去x,得y2-y+1-m=0;

由△=1-4(1-m)>0,得m>且y1+y2=1,y1y2=1-m.

x1x2=?==.

(Ⅱ)由向量=(x1,y1-p)與=(-x2,y2-p)共線;

得x1(y2-p)+x2(y1-p)=0;

∴p=

=

∵m>∴0<p<

故p的取值范圍是.

【解析】【答案】(Ⅰ)依題意,A、B、C、D四點坐標是下面方程組的五、計算題(共3題,共24分)20、略

【分析】【分析】根據(jù)韋達定理求得設方程x2-x-1=0的二根分別為x1、x2,由韋達定理,得x1+x2=1,x1?x2=-1;然后將x1、x2分別代入方程x6-px2+q=0列出方程組,再通過解方程組求得pq的值.【解析】【解答】解:設方程x2-x-1=0的二根分別為x1、x2,由韋達定理,得x1+x2=1,x1?x2=-1;則。

x12+x22=(x1+x2)2-2x1?x2=1+2=3;

(x12)2+(x22)2=(x12+x22)2-2x12?x22=7.

將x1、x2分別代入方程x6-px2+q=0;得。

x16-px12+q=0①

x26-px22+q=0②

①-②;得。

(x16-x26)-p(x12-x22)=0;

【(x12)3-(x22)3】-p(x12-x22)=0;

(x12-x22)【(x12)2+(x22)2+x12?x22】-p(x12-x22)=0;

由于x1≠x2,則x12-x22≠0;所以化簡,得。

【(x12)2+(x22)2+x12?x22】-p=0;

則p=(x12)2+(x22)2+(x1?x2)2=7+(-1)2=8;

①+②;得。

(x16+x26)-8(x12+x22)+2q=0;

【(x12)3+(x22)3】-24+2q=0;

∴(x12+x22)【(x12)2+(x22)2-x12?x22】-24+2q=0;

∴3【(x12)2+(x22)2-(x1?x2)2】-24+2q=0;

∴3(7-1)-24+2q=0;解得。

q=3;

綜上所述;p=8,q=3.

故答案是:8、3.21、略

【分析】【分析】(1)根據(jù)線段的垂直平分線推出BM=ME;根據(jù)勾股定理求出即可.

(2)連接ME,NE,NB,設AM=a,DN=b,NC=6-b,根據(jù)勾股定理得到AM2+AE2=ME2,DN2+DE2=NE2=BN2=BC2+CN2,代入求出即可.【解析】【解答】解:(1)連接ME.

∵MN是BE的垂直平分線;

∴BM=ME=6-AM;

在△AME中;∠A=90°;

由勾股定理得:AM2+AE2=ME2;

AM2+x2=(6-AM)2;

AM=3-x.

(2)連接ME,NE,NB,設AM=a,DN=b,NC=6-b;

因MN垂直平分BE;

則ME=MB=6-a;NE=NB;

所以由勾股定理得

AM2+AE2=ME2,DN2+DE2=NE2=BN2=BC2+CN2

即a2+x2=(6-a)2,b2+(4-x)2=42+(6-b)2;

解得a=3-x2,b=x2+x+3;

所以四邊形ADNM的面積為S=×(a+b)×4=2x+12;

即S關(guān)于x的函數(shù)關(guān)系為S=2x+12(0<x<2);

答:S關(guān)于x的函數(shù)關(guān)系式是S=2x+12.22、略

【分析】【分析】利用三個角是直角的四邊形是矩形易證四邊形EFGH為矩形,那么由折疊可得HF的長即為邊AD的長.【解析】【解答】解:∵∠HEM=∠AEH;∠BEF=∠FEM;

∴∠HEF=∠HEM+∠FEM=×180°=90°;

同理可得:∠EHG=∠HGF=∠EFG=90°;

∴四邊形EFGH為矩形.

∵AD=AH+HD=HM+MF=HF,HF===5;

∴AD=5厘米.

故答案為5.六、綜合題(共4題,共36分)23、略

【分析】【分析】(1)過C作CE⊥AB于E;根據(jù)拋物線的對稱性知AE=BE;由于四邊形ABCD是菱形,易證得Rt△OAD≌Rt△EBC,則OA=AE=BE,可設菱形的邊長為2m,則AE=BE=1m,在Rt△BCE中,根據(jù)勾股定理即可求出m的值,由此可確定A;B、C三點的坐標;

(2)根據(jù)(1)題求得的三點坐標,用待定系數(shù)法即可求出拋物線的解析式.【解析】【解答】解:(1)由拋物線的對稱性可知AE=BE.

∴△AOD≌△BEC.

∴OA=EB=EA.

設菱形的邊長為2m;在Rt△AOD中;

m2+()2=(2m)2;解得m=1.

∴DC=2;OA=1,OB=3.

∴A,B,C三點的坐標分別為(1,0),(3,0),(2,).

(2)解法一:設拋物線的解析式為y=a(x-2)2+,代入A的坐標(1,0),得a=-.

∴拋物線的解析式為y=-(x-2)2+.

解法二:設這個拋物線的解析式為y=ax2+bx+c,由已知拋物線經(jīng)過A(1,0),B(3,0),C(2,)三點;

得解這個方程組,得

∴拋物線的解析式為y=-x2+4x-3.24、略

【分析】【分析】先根據(jù)條件利用待定系數(shù)法求出拋物線的解析式,然后根據(jù)解析式求出點D,點C的坐標,最后根據(jù)相似三角形的性質(zhì)求出點P的坐標,根據(jù)P、B兩點的坐標利用待定系數(shù)法就可以求出直線PB的解析式.【解析】【解答】解:∵二次函數(shù)的圖象的頂點坐標是;它與x軸的一個交點B的坐標是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論