福建莆田秀嶼下嶼中學2024年高三考前得分訓練(三)數(shù)學試題試卷_第1頁
福建莆田秀嶼下嶼中學2024年高三考前得分訓練(三)數(shù)學試題試卷_第2頁
福建莆田秀嶼下嶼中學2024年高三考前得分訓練(三)數(shù)學試題試卷_第3頁
福建莆田秀嶼下嶼中學2024年高三考前得分訓練(三)數(shù)學試題試卷_第4頁
福建莆田秀嶼下嶼中學2024年高三考前得分訓練(三)數(shù)學試題試卷_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建莆田秀嶼下嶼中學2023年高三考前得分訓練(三)數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù),則()A. B. C. D.22.已知函數(shù)的圖象在點處的切線方程是,則()A.2 B.3 C.-2 D.-33.函數(shù)的圖像大致為()A. B.C. D.4.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結(jié)果中最接近真實值的是()A. B. C. D.5.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.6.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.57.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]8.已知集合,則全集則下列結(jié)論正確的是()A. B. C. D.9.已知的垂心為,且是的中點,則()A.14 B.12 C.10 D.810.為比較甲、乙兩名高中學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學運算最強11.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)12.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數(shù)字按照任意次序排成一行,拼成一個6位數(shù),則產(chǎn)生的不同的6位數(shù)的個數(shù)為A.96 B.84 C.120 D.360二、填空題:本題共4小題,每小題5分,共20分。13.已知一個正四棱錐的側(cè)棱與底面所成的角為,側(cè)面積為,則該棱錐的體積為__________.14.記為數(shù)列的前項和.若,則______.15.已知,則展開式中的系數(shù)為__16.已知雙曲線的一條漸近線為,且經(jīng)過拋物線的焦點,則雙曲線的標準方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)拋物線過點.(1)求拋物線C的方程;(2)F是拋物線C的焦點,過焦點的直線與拋物線交于A,B兩點,若,求的值.18.(12分)已知函數(shù).(1)當時,試求曲線在點處的切線;(2)試討論函數(shù)的單調(diào)區(qū)間.19.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.20.(12分)已知曲線,直線:(為參數(shù)).(I)寫出曲線的參數(shù)方程,直線的普通方程;(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.21.(12分)在直角坐標系中,曲線的標準方程為.以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)若點在曲線上,點在直線上,求的最小值.22.(10分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)若射線與和分別交于點,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據(jù)復數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點睛】本題主要考查了復數(shù)模的性質(zhì),屬于容易題.2.B【解析】

根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B【點睛】本題主要考查導數(shù)的幾何意義,意在考查學生對這些知識的理解掌握水平.3.A【解析】

根據(jù)排除,,利用極限思想進行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當時,,當,,排除,故選:.【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.4.B【解析】

為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個座位的寬度,則設(shè)弧所在圓的半徑為,則解得可以近似地認為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【點睛】本題考查了弧長公式,需熟記公式,考查了學生的分析問題的能力,屬于基礎(chǔ)題.5.D【解析】

根據(jù)線面垂直的性質(zhì),可知;結(jié)合即可證明,進而求得.由線段關(guān)系及平面向量數(shù)量積定義即可求得.【詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【點睛】本題考查了直線與平面垂直的性質(zhì)應用,平面向量數(shù)量積的運算,屬于基礎(chǔ)題.6.D【解析】

根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.7.B【解析】

先求出,得到,再結(jié)合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.8.D【解析】

化簡集合,根據(jù)對數(shù)函數(shù)的性質(zhì),化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結(jié)論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關(guān)系,求解不等式是解題的關(guān)鍵,屬于基礎(chǔ)題.9.A【解析】

由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因為為的垂心,所以,所以,而,所以,因為是的中點,所以.故選:A【點睛】本題考查了利用向量的線性運算和向量的數(shù)量積的運算率,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.10.D【解析】

根據(jù)所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.11.C【解析】

由奇函數(shù)的性質(zhì)可得,進而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因為是定義在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點睛】本題考查了函數(shù)單調(diào)性和奇偶性的應用,考查了一元二次不等式的解法,屬于中檔題.12.B【解析】

2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個,其中含有2個10的排列數(shù)共個,所以產(chǎn)生的不同的6位數(shù)的個數(shù)為.故選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

如圖所示,正四棱錐,為底面的中心,點為的中點,則,設(shè),根據(jù)正四棱錐的側(cè)面積求出的值,再利用勾股定理求得正四棱錐的高,代入體積公式,即可得到答案.【詳解】如圖所示,正四棱錐,為底面的中心,點為的中點,則,設(shè),,,,,,.故答案為:.【點睛】本題考查棱錐的側(cè)面積和體積,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力.14.1【解析】

由已知數(shù)列遞推式可得數(shù)列是以16為首項,以為公比的等比數(shù)列,再由等比數(shù)列的前項和公式求解.【詳解】由,得,.且,則,即.數(shù)列是以16為首項,以為公比的等比數(shù)列,則.故答案為:1.【點睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項和,意在考查學生對這些知識的理解掌握水平.15.1.【解析】

由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計算公式,求出展開式中的系數(shù).【詳解】∵已知,則,

它表示4個因式的乘積.

故其中有2個因式取,一個因式取,剩下的一個因式取1,可得的項.

故展開式中的系數(shù).

故答案為:1.【點睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計算公式,屬于中檔題.16.【解析】

設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過拋物線焦點,能求出雙曲線方程.【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過拋物線焦點,∴,∴雙曲線方程為,故答案為:.【點睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質(zhì)的合理運用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)代入計算即可.(2)設(shè)直線AB的方程為,再聯(lián)立直線與拋物線的方程,消去可得的一元二次方程,再根據(jù)韋達定理與求解,進而利用弦長公式求解即可.【詳解】解:(1)因為拋物線過點,所以,所以,拋物線的方程為(2)由題意知直線AB的斜率存在,可設(shè)直線AB的方程為,,.因為,所以,聯(lián)立,化簡得,所以,,所以,,解得,所以.【點睛】本題考查拋物線的方程以及聯(lián)立直線與拋物線求弦長的簡單應用.屬于基礎(chǔ)題.18.(1);(2)見解析【解析】

(1)對函數(shù)進行求導,可以求出曲線在點處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對函數(shù)進行求導,對實數(shù)進行分類討論,可以求出函數(shù)的單調(diào)區(qū)間.【詳解】(1)當時,函數(shù)定義域為,,所以切線方程為;(2)當時,函數(shù)定義域為,在上單調(diào)遞增當時,恒成立,函數(shù)定義域為,又在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當時,函數(shù)定義域為,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當時,設(shè)的兩個根為且,由韋達定理易知兩根均為正根,且,所以函數(shù)的定義域為,又對稱軸,且,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增【點睛】本題考查了曲線切線方程的求法,考查了利用函數(shù)的導數(shù)討論函數(shù)的單調(diào)性問題,考查了分類思想.19.(1)證明見解析;(2).【解析】

(1)取中點,連接,根據(jù)等腰三角形的性質(zhì)得到,利用全等三角形證得,由此證得平面,進而證得平面平面.(2)由(1)知平面,即是四面體的面上的高,結(jié)合錐體體積公式,求得四面體的體積.【詳解】(1)證明:如圖,取中點,連接,由則,則,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面體的面上的高,且.在中,,由勾股定理易知故四面體的體積【點睛】本小題主要考查面面垂直的證明,考查錐體體積計算,考查空間想象能力和邏輯推理能力,屬于中檔題.20.(I);(II)最大值為,最小值為.【解析】試題分析:(I)由橢圓的標準方程設(shè),得橢圓的參數(shù)方程為,消去參數(shù)即得直線的普通方程為;(II)關(guān)鍵是處理好與角的關(guān)系.過點作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問題轉(zhuǎn)化為橢圓上的點,到定直線的最大值與最小值問題處理.試題解析:(I)曲線C的參數(shù)方程為(為參數(shù)).直線的普通方程為.(II)曲線C上任意一點到的距離為.則.其中為銳角,且.當時,取到最大值,最大值為.當時,取到最小值,最小值為.【考點定位】1、橢圓和直線的參數(shù)方程;2、點到直線的距離公式;3、解直角三角形.21.(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論