2025年人教新課標高一數(shù)學上冊階段測試試卷_第1頁
2025年人教新課標高一數(shù)學上冊階段測試試卷_第2頁
2025年人教新課標高一數(shù)學上冊階段測試試卷_第3頁
2025年人教新課標高一數(shù)學上冊階段測試試卷_第4頁
2025年人教新課標高一數(shù)學上冊階段測試試卷_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年人教新課標高一數(shù)學上冊階段測試試卷607考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共8題,共16分)1、定義在R上的奇函數(shù)f(x)一定有()

A.f(x)-f(-x)>0

B.f(x)-f(-x)<0

C.f(x)f(-x)≤0

D.f(x)f(-x)>0

2、已知定義在R上的偶函數(shù)f(x)在[0,+∞)上是增函數(shù),且f(ax+1)≤f(x-2)對任意都成立;則實數(shù)a的取值范圍為()

A.[-2;0]

B.[-3;-1]

C.[-5;1]

D.[-2;1)

3、設(shè)且則銳角為()A.B.C.D.4、若正數(shù)滿足則的取值范圍是()A.B.C.D.5、【題文】各棱長均為的三棱錐的表面積為A.B.C.D.6、【題文】直線l與直線3x+4y-15=0垂直,與圓x2+y2-18x+45=0相切,則l的方程是()A.4x-3y-6="0"B.4x-3y-66=0C.4x-3y-6=0或4x-3y-66="0"D.4x-3y-15=07、【題文】如圖,下列物體的正視圖和俯視圖中有錯誤的一項是()

8、將兩個數(shù)a=2017b=2018

交換使得a=2018b=2017

下面語句正確一組是(

)

A.B.C.D.評卷人得分二、填空題(共8題,共16分)9、動圓C的方程是(x-a-1)2+(y+2a)2=1,則圓心C的軌跡方程是____.10、如果函數(shù)的零點所在的區(qū)間是則正整數(shù)__________.11、將化為弧度為__________12、已知集合若則13、【題文】偶函數(shù)則關(guān)于的方程。

上解的個數(shù)是____個.14、【題文】把邊長為的正方形沿對角線折成直二面角,折成直二面角后,在四點所在的球面上,與兩點之間的球面距離為____.15、已知函數(shù)若f(x)<f(-1),則實數(shù)x的取值范圍是______.16、sin11°cos19°+cos11°sin19°的值是______.評卷人得分三、證明題(共8題,共16分)17、如圖;已知AB是⊙O的直徑,P是AB延長線上一點,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:

(1)AD=AE

(2)PC?CE=PA?BE.18、已知D是銳角△ABC外接圓劣弧的中點;弦AD與邊BC相交于點E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.19、如圖;過圓O外一點D作圓O的割線DBA,DE與圓O切于點E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.

(1)求證:E為的中點;

(2)若CF=3,DE?EF=,求EF的長.20、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.21、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.22、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點,DF⊥BE,垂足為F,CF交AD于點G.

求證:(1)∠CFD=∠CAD;

(2)EG<EF.23、初中我們學過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計一種方案,解決問題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.24、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評卷人得分四、作圖題(共3題,共24分)25、如圖A、B兩個村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設(shè)管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設(shè)管道的費用最省,并求出其費用.26、如圖A、B兩個村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設(shè)管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設(shè)管道的費用最省,并求出其費用.27、作出函數(shù)y=的圖象.評卷人得分五、綜合題(共4題,共36分)28、已知二次函數(shù)y=x2-2mx-m2(m≠0)的圖象與x軸交于點A;B,它的頂點在以AB為直徑的圓上.

(1)證明:A;B是x軸上兩個不同的交點;

(2)求二次函數(shù)的解析式;

(3)設(shè)以AB為直徑的圓與y軸交于點C,D,求弦CD的長.29、已知拋物線y=x2+4ax+3a2(a>0)

(1)求證:拋物線的頂點必在x軸的下方;

(2)設(shè)拋物線與x軸交于A、B兩點(點A在點B的右邊),過A、B兩點的圓M與y軸相切,且點M的縱坐標為;求拋物線的解析式;

(3)在(2)的條件下,若拋物線的頂點為P,拋物線與y軸交于點C,求△CPA的面積.30、如圖1,在平面直角坐標系中,拋物線y=ax2+c與x軸正半軸交于點F(4;0);與y軸正半軸交于點E(0,4),邊長為4的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合;

(1)求拋物線的函數(shù)表達式;

(2)如圖2;若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線與邊AB交于點P且同時與邊CD交于點Q.設(shè)點A的坐標為(m,n)

①當PO=PF時;分別求出點P和點Q的坐標及PF所在直線l的函數(shù)解析式;

②當n=2時;若P為AB邊中點,請求出m的值;

(3)若點B在第(2)①中的PF所在直線l上運動;且正方形ABCD與拋物線有兩個交點,請直接寫出m的取值范圍.

31、已知點A(-2,0),點B(0,2),點C在第二、四象限坐標軸夾角平分線上,∠BAC=60°,那么點C的坐標為____.參考答案一、選擇題(共8題,共16分)1、C【分析】

因為f(x)為R上的奇函數(shù);所以f(-x)=-f(x);

所以f(x)f(-x)=-[f(x)]2≤0;

故選C.

【解析】【答案】根據(jù)奇函數(shù)的性質(zhì)有f(-x)=-f(x);由此可判斷f(x)f(-x)的符號.

2、A【分析】

∵偶函數(shù)f(x)在[0;+∞)上是增函數(shù);

則f(x)在(-∞;0)上是減函數(shù);

則f(x-2)在區(qū)間[1]上的最小值為f(-1)=f(1)

若f(ax+1)≤f(x-2)對任意都成立;

當時;-1≤ax+1≤1,即-2≤ax≤0恒成立。

則-2≤a≤0

故選A

【解析】【答案】由已知中定義在R上的偶函數(shù)f(x)在[0,+∞)上是增函數(shù),根據(jù)偶函數(shù)單調(diào)性的性質(zhì),我們可得f(x)在(-∞,0)上是減函數(shù),進而可將f(ax+1)≤f(x-2)對任意都成立,轉(zhuǎn)化為當時;-2≤ax≤0恒成立,解不等式即可得到答案.

3、D【分析】【解析】試題分析:根據(jù)題意,由于且故可知銳角為故選D.考點:向量共線【解析】【答案】D4、D【分析】所以即的取值范圍是【解析】【答案】D5、D【分析】【解析】

試題分析:此三棱錐為正四面體,所以其表面積

考點:正四面體的性質(zhì);及表面積.

點評:因為各棱長相等,所以此四面體是正四面體,各面都為正三角形.【解析】【答案】D.6、C【分析】【解析】由直線l與直線3x+4y-15=0垂直,則可設(shè)l的方程是4x-3y+b=0.

由圓x2+y2-18x+45=0,知圓心O′(9,0),半徑r=6;

∴=6,|36+b|=30.∴b=-6或b=-66.

故l的方程為4x-3y-6=0或4x-3y-66=0.【解析】【答案】C7、D【分析】【解析】畫三視圖時不可見輪廓線一定要畫成虛線,選項D中的俯視圖缺少兩條不可見輪廓線.【解析】【答案】D8、B【分析】【分析】

要實現(xiàn)兩個變量ab

值的交換,需要借助中間量c

先把b

的值賦給中間變量c

再把a

的值賦給變量b

把c

的值賦給變量a.

本題考查了賦值語句的應(yīng)用問題,是基礎(chǔ)題.

【解答】

解:先把b

的值賦給中間變量c

這樣c=2018

再把a

的值賦給變量b

這樣b=2017

把c

的值賦給變量a

這樣a=2018

故選B.

【解析】B

二、填空題(共8題,共16分)9、略

【分析】

設(shè)圓C的圓心坐標為(x;y)

∵圓C的方程是(x-a-1)2+(y+2a)2=1;

∴圓心為(a+1;-2a)

由此可得消去參數(shù)a可得2x+y+2=0

即圓心C的軌跡是直線;其方程是2x+y-2=0

【解析】【答案】設(shè)圓心坐標為(x;y),結(jié)合題意建立由a表示x;y的方程組得到軌跡的參數(shù)方程,再消去參數(shù)a即可得到圓心C的軌跡方程.

10、略

【分析】試題分析:由于函數(shù)在定義域內(nèi)是單調(diào)遞增的,所以函數(shù)在定義域內(nèi)只有一個零點,所以函數(shù)的零點在區(qū)間上,故考點:函數(shù)零點的存在性定理.【解析】【答案】211、略

【分析】【解析】【答案】12、略

【分析】試題分析:若兩個集合相等,則兩個集合中的元素完全相同.又考點:此題考查了兩個集合相等的條件.【解析】【答案】13、略

【分析】【解析】解:因為。

偶函數(shù)則關(guān)于的方程上解的個數(shù)是3.【解析】【答案】314、略

【分析】【解析】略【解析】【答案】15、略

【分析】解:f(-1)=11;

當x≤0時,由x2-4x+6<11,得出x2-4x-5<0;解得-1<x<5,所以-1<x≤0①

當x>0時;由-x+6<11,得出x>-5,所以x>0②

①②兩部分合并得出數(shù)x的取值范圍是x>-1

故答案為:x>-1.

由已知;先計算出f(-1)=11,根據(jù)分段函數(shù)的意義,逐段求解,最后合并即可.

本題考查分段函數(shù)的知識,不等式求解.分段函數(shù)分段解,是解決分段函數(shù)問題的核心理念.【解析】x>-116、略

【分析】解:由sin11°cos19°+cos11°sin19°=sin(11°+19°)=sin30°=.

故答案為.

直接利用利用正弦的和與差的公式求解即可.

本題主要考查了正弦的和與差的公式和特殊角的三角函數(shù)值的計算.比較基礎(chǔ).【解析】三、證明題(共8題,共16分)17、略

【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;

即可得到結(jié)論;

(2)根據(jù)三角形相似的判定易證Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,

∵PC是⊙O的切線;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB為⊙O的直徑;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC?CE=PA?BE.18、略

【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;

(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F為AC中點;

∴cosC==.

答:cosC的值是.

(3)BF過圓心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.19、略

【分析】【分析】要證E為中點,可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE

OA=OE=>∠OAE=∠OEA

DE切圓O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

?OE∥AD

=>E為的中點.

(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圓O于E=>△FCE∽△FEA

∴,

即DE?EF=AD?CF

DE?EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC?FA=3x(3+2)=15

∴EF=20、略

【分析】【分析】構(gòu)造以重心G為頂點的平行四邊形GBFC,并巧用A、D、F、C四點共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四邊形GBFC是平行四邊形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵過A;G的圓與BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四點共圓;

∴GA;GF=GC?GD;

即GA2=GC?GD.21、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.22、略

【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點共圓即可;

(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

則=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四點共圓;

∴∠CFD=∠CAD.

(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四點共圓;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.23、略

【分析】【分析】(1)過點C作CE⊥AB于點E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.24、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.四、作圖題(共3題,共24分)25、略

【分析】【分析】作點A關(guān)于河CD的對稱點A′,當水廠位置O在線段AA′上時,鋪設(shè)管道的費用最省.【解析】【解答】解:作點A關(guān)于河CD的對稱點A′;連接A′B,交CD與點O,則點O即為水廠位置,此時鋪設(shè)的管道長度為OA+OB.

∵點A與點A′關(guān)于CD對稱;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

過點A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:鋪設(shè)管道的最省費用為10000元.26、略

【分析】【分析】作點A關(guān)于河CD的對稱點A′,當水廠位置O在線段AA′上時,鋪設(shè)管道的費用最?。窘馕觥俊窘獯稹拷猓鹤鼽cA關(guān)于河CD的對稱點A′;連接A′B,交CD與點O,則點O即為水廠位置,此時鋪設(shè)的管道長度為OA+OB.

∵點A與點A′關(guān)于CD對稱;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

過點A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:鋪設(shè)管道的最省費用為10000元.27、【解答】圖象如圖所示。

【分析】【分析】描點畫圖即可五、綜合題(共4題,共36分)28、略

【分析】【分析】(1)求出根的判別式;然后根據(jù)根的判別式大于0即可判斷與x軸有兩個交點;

(2)利用根與系數(shù)的關(guān)系求出AB的長度;也就是圓的直徑,根據(jù)頂點公式求出頂點的坐標得到圓的半徑,然后根據(jù)直徑是半徑的2倍列式即可求出m的值,再把m的值代入二次函數(shù)解析式便不難求出函數(shù)解析式;

(3)根據(jù)(2)中的結(jié)論,求出圓的半徑,弦心距,半弦,然后利用勾股定理列式求出半弦長,弦CD的長等于半弦的2倍.【解析】【解答】解:(1)證明:∵y=x2-2mx-m2(m≠0);

∴a=1,b=-2m,c=-m2;

△=b2-4ac=(-2m)2-4×1×(-m2)=4m2+4m2=8m2;

∵m≠0;

∴△=8m2>0;

∴A;B是x軸上兩個不同的交點;

(2)設(shè)AB點的坐標分別為A(x1,0),B(x2;0);

則x1+x2=-=-=2m,x1?x2==-m2;

∴AB=|x1-x2|===2;

-=-=m;

==-2m2;

∴頂點坐標是(m,-2m2);

∵拋物線的頂點在以AB為直徑的圓上;

∴AB=2(2m2);

即2=2(2m2);

解得m2=;

∴m=±;

∴y=x2-2×x-=x2-x-,或y=x2+2×x-=x2+x-;

即拋物線解析式為:y=x2-x-或y=x2+x-;

(3)根據(jù)(2)的結(jié)論,圓的半徑為2m2=2×=1;

弦CD的弦心距為|m|=;

∴CD==;

∴CD=2×=.29、略

【分析】【分析】(1)判定拋物線的頂點必在x軸的下方;根據(jù)開口方向,二次函數(shù)只要與x軸有兩個交點即可.

(2)利用垂徑定理;勾股定理可以求出

(3)利用三角形面積公式,以CD為底邊,P到y(tǒng)軸的距離為高,可以求出.【解析】【解答】(1)證明:拋物線y=x2+4ax+3a2開口向上;且a>0

又△=(4a)2-4×3a2=4a2>0

∴拋物線必與x軸有兩個交點

∴其頂點在x軸下方

(2)解:令x2+4ax+3a2=0

∴x1=-a,x2=-3a2

∴A(-a;0),B(-3a,0)

又圓M與y軸相切;

∴MA=2a

如圖在Rt△MAC中,MA2=NA2+NM2即(2a)2=a2+()2

∴a=±1(負值舍去)

∴拋物線的解析式為y=x2+4x+3

(3)解:P(-2;-1),A(-1,0),C(0,3)

設(shè)直線PA的方程:y=kx+b,則-1=-2k+b

0=-k+b

∴k=1

b=1

∴y=x+1;令x=0得y=1

∴D(0;1)

∴S△CPA=S△PCD-S△CAD=×2×2-×2×1=130、略

【分析】【分析】(1)已知拋物線的對稱軸是y軸;頂點是(0,4),經(jīng)過點(4,0),利用待定系數(shù)法即可求得函數(shù)的解析式;

(2)①過點P作PG⊥x軸于點G;根據(jù)三線合一定理可以求得G的坐標,則P點的橫坐標可以求得,把P的橫坐標代入拋物線的解析式,即可求得縱坐標,得到P的坐標,再根據(jù)正方形的邊長是4,即可求得Q的縱坐標,代入拋物線的解析式即可求得Q的坐標,然后利用待定系數(shù)法即可求得直線PF的解析式;

②已知n=2;即A的縱坐標是2,則P的縱坐標一定是2,把y=2代入拋物線的解析式即可求得P的橫坐標,根據(jù)AP=2,且AP∥y軸,即可得到A的橫坐標,從而求得m的值;

(3)假設(shè)B在M點時,C在拋物線上或假設(shè)當B點在N點時,D點同時在拋物線上時,求得兩個臨界點,當B在MP和FN之間移動時,拋物線與正方形有兩個交點.【解析】【解答】解:(1)由拋物線y=ax2+c經(jīng)過點E(0;4),F(xiàn)(4,0)

,解得;

∴y=-x2+4;

(2)①過點P作PG⊥x軸于點G;

∵PO=PF∴OG=FG

∵F(4;0)∴OF=4

∴OG=OF=×4=2;即點P的橫坐標為2

∵點P在拋物線上。

∴y=-×22+4=3;即P點的縱坐標為3

∴P(2;3)

∵點P的縱坐標為3;正方形ABCD邊長是4,∴點Q的縱坐標為-1

∵點Q在拋物線上,∴-1=-x2+4

∴x1=2,x2=-2(不符題意;舍去)

∴Q(2;-1)

設(shè)直線PF的解析式是y=kx+b;

根據(jù)題意得:;

解得:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論