福建省建甌市第二中學(xué)2024屆高三全真數(shù)學(xué)試題模擬試卷_第1頁(yè)
福建省建甌市第二中學(xué)2024屆高三全真數(shù)學(xué)試題模擬試卷_第2頁(yè)
福建省建甌市第二中學(xué)2024屆高三全真數(shù)學(xué)試題模擬試卷_第3頁(yè)
福建省建甌市第二中學(xué)2024屆高三全真數(shù)學(xué)試題模擬試卷_第4頁(yè)
福建省建甌市第二中學(xué)2024屆高三全真數(shù)學(xué)試題模擬試卷_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省建甌市第二中學(xué)2023屆高三全真數(shù)學(xué)試題模擬試卷(12)注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件2.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.33.()A. B. C. D.4.復(fù)數(shù)的共軛復(fù)數(shù)為()A. B. C. D.5.已知向量,且,則m=()A.?8 B.?6C.6 D.86.已知函數(shù)是上的偶函數(shù),且當(dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),則,,的大小關(guān)系是()A. B.C. D.7.在的展開(kāi)式中,的系數(shù)為()A.-120 B.120 C.-15 D.158.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是()A. B. C. D.9.一袋中裝有個(gè)紅球和個(gè)黑球(除顏色外無(wú)區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.10.下列函數(shù)中,值域?yàn)镽且為奇函數(shù)的是()A. B. C. D.11.已知函數(shù),則不等式的解集為()A. B. C. D.12.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動(dòng)點(diǎn),為軸上的動(dòng)點(diǎn),則的最大值是()A. B.9 C.7 D.二、填空題:本題共4小題,每小題5分,共20分。13.若變量x,y滿足:,且滿足,則參數(shù)t的取值范圍為_(kāi)______.14.設(shè)復(fù)數(shù)滿足,則_________.15.等差數(shù)列(公差不為0),其中,,成等比數(shù)列,則這個(gè)等比數(shù)列的公比為_(kāi)____.16.設(shè)函數(shù),則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的普通方程;(2)設(shè)射線與曲線交于不同于極點(diǎn)的點(diǎn),與曲線交于不同于極點(diǎn)的點(diǎn),求線段的長(zhǎng).18.(12分)如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點(diǎn).求證:(1)AM∥平面BDE;(2)AM⊥平面BDF.19.(12分)已知的內(nèi)角,,的對(duì)邊分別為,,,且.(1)求;(2)若的面積為,,求的周長(zhǎng).20.(12分)某貧困地區(qū)幾個(gè)丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應(yīng)開(kāi)鑿的直線穿山隧道,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標(biāo)系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點(diǎn),的橫坐標(biāo)為.(1)當(dāng)為何值時(shí),公路的長(zhǎng)度最短?求出最短長(zhǎng)度;(2)當(dāng)公路的長(zhǎng)度最短時(shí),設(shè)公路交軸,軸分別為,兩點(diǎn),并測(cè)得四邊形中,,,千米,千米,求應(yīng)開(kāi)鑿的隧道的長(zhǎng)度.21.(12分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.22.(10分)如圖:在中,,,.(1)求角;(2)設(shè)為的中點(diǎn),求中線的長(zhǎng).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力.2.D【解析】

畫出可行域,將化為,通過(guò)平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過(guò)時(shí),直線在軸上的截距最大,有最大值為3.故選:D.【點(diǎn)睛】本題考查了線性規(guī)劃問(wèn)題.一般第一步畫出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過(guò)平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即可求出最值.注意畫可行域時(shí),邊界線的虛實(shí)問(wèn)題.3.B【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】.故選B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.4.D【解析】

直接相乘,得,由共軛復(fù)數(shù)的性質(zhì)即可得結(jié)果【詳解】∵∴其共軛復(fù)數(shù)為.故選:D【點(diǎn)睛】熟悉復(fù)數(shù)的四則運(yùn)算以及共軛復(fù)數(shù)的性質(zhì).5.D【解析】

由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.6.D【解析】

利用對(duì)數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項(xiàng).【詳解】因?yàn)?,,?又,故.因?yàn)楫?dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),所以.因?yàn)闉榕己瘮?shù),故,所以.故選:D.【點(diǎn)睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對(duì)數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時(shí)注意選擇合適的中間數(shù)來(lái)傳遞不等關(guān)系,本題屬于中檔題.7.C【解析】

寫出展開(kāi)式的通項(xiàng)公式,令,即,則可求系數(shù).【詳解】的展開(kāi)式的通項(xiàng)公式為,令,即時(shí),系數(shù)為.故選C【點(diǎn)睛】本題考查二項(xiàng)式展開(kāi)的通項(xiàng)公式,屬基礎(chǔ)題.8.A【解析】

根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問(wèn)題,是基礎(chǔ)題.9.A【解析】

由題意可知,隨機(jī)變量的可能取值有、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機(jī)變量的可能取值有、、、,則,,,.因此,隨機(jī)變量的數(shù)學(xué)期望為.故選:A.【點(diǎn)睛】本題考查隨機(jī)變量數(shù)學(xué)期望的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.10.C【解析】

依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域?yàn)?,非奇非偶函?shù),排除;B.,值域?yàn)?,奇函?shù),排除;C.,值域?yàn)椋婧瘮?shù),滿足;D.,值域?yàn)椋瞧娣桥己瘮?shù),排除;故選:.【點(diǎn)睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對(duì)于函數(shù)知識(shí)的綜合應(yīng)用.11.D【解析】

先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域?yàn)?因?yàn)?,所以為上的偶函?shù),因?yàn)楹瘮?shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因?yàn)?,所以,且,解?故選:D【點(diǎn)睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.12.B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對(duì)稱點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對(duì)稱性,求出所求式子的最大值.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)變量x,y滿足:,畫出可行域,由,解得直線過(guò)定點(diǎn),直線繞定點(diǎn)旋轉(zhuǎn)與可行域有交點(diǎn)即可,再結(jié)合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過(guò)定點(diǎn),由,解得,由,解得,要使,則與可行域有交點(diǎn),當(dāng)時(shí),滿足條件,當(dāng)時(shí),直線得斜率應(yīng)該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,還考查了轉(zhuǎn)化運(yùn)算求解的能力,屬于中檔題.14..【解析】

利用復(fù)數(shù)的運(yùn)算法則首先可得出,再根據(jù)共軛復(fù)數(shù)的概念可得結(jié)果.【詳解】∵復(fù)數(shù)滿足,∴,∴,故而可得,故答案為.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則,共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.15.4【解析】

根據(jù)等差數(shù)列關(guān)系,用首項(xiàng)和公差表示出,解出首項(xiàng)和公差的關(guān)系,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由題意得:,則整理得,,所以故答案為:4【點(diǎn)睛】此題考查等差數(shù)列基本量的計(jì)算,涉及等比中項(xiàng),考查基本計(jì)算能力.16.【解析】

由自變量所在定義域范圍,代入對(duì)應(yīng)解析式,再由對(duì)數(shù)加減法運(yùn)算法則與對(duì)數(shù)恒等式關(guān)系分別求值再相加,即為答案.【詳解】因?yàn)楹瘮?shù),則因?yàn)?,則故故答案為:【點(diǎn)睛】本題考查分段函數(shù)求值,屬于簡(jiǎn)單題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)【解析】

曲線的參數(shù)方程轉(zhuǎn)換為直角坐標(biāo)方程為.再用極直互化公式求解,曲線的極坐標(biāo)方程用極直互化公式轉(zhuǎn)換為直角坐標(biāo)方程.射線與曲線的極坐標(biāo)方程聯(lián)解求出,射線與曲線的極坐標(biāo)方程聯(lián)解求出,再用得解【詳解】解:曲線的參數(shù)方程為(為參數(shù),轉(zhuǎn)換為直角坐標(biāo)方程為.把,代入得:曲線的極坐標(biāo)方程為.轉(zhuǎn)換為直角坐標(biāo)方程為.設(shè)射線與曲線交于不同于極點(diǎn)的點(diǎn),所以,解得.與曲線交于不同于極點(diǎn)的點(diǎn),所以,解得,所以【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程直角坐標(biāo)方程相互轉(zhuǎn)換及極坐標(biāo)下利用和的幾何意義求線段的長(zhǎng).(1)直角坐標(biāo)方程化為極坐標(biāo)方程只需將直角坐標(biāo)方程中的分別用,代替即可得到相應(yīng)極坐標(biāo)方程.參數(shù)方程化為極坐標(biāo)方程必須先化成直角坐標(biāo)方程再轉(zhuǎn)化為極坐標(biāo)方程.(2)直接求解,能達(dá)到化繁為簡(jiǎn)的解題目的;如果幾何關(guān)系不容易通過(guò)極坐標(biāo)表示時(shí),可以先化為直角坐標(biāo)方程,將不熟悉的問(wèn)題轉(zhuǎn)化為熟悉的問(wèn)題加以解決.18.(1)見(jiàn)解析(2)見(jiàn)解析【解析】(1)建立如圖所示的空間直角坐標(biāo)系,設(shè)AC∩BD=N,連結(jié)NE.則N,E(0,0,1),A(,,0),M.∴=,=.∴=且NE與AM不共線.∴NE∥AM.∵NE平面BDE,AM平面BDE,∴AM∥平面BDE.(2)由(1)知=,∵D(,0,0),F(xiàn)(,,1),∴=(0,,1),∴·=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.19.(1);(2).【解析】

(1)利用正弦定理將目標(biāo)式邊化角,結(jié)合倍角公式,即可整理化簡(jiǎn)求得結(jié)果;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結(jié)合即可求得周長(zhǎng).【詳解】(1)由題設(shè)得.由正弦定理得∵∴,所以或.當(dāng),(舍)故,解得.(2),從而.由余弦定理得.解得.∴.故三角形的周長(zhǎng)為.【點(diǎn)睛】本題考查由余弦定理解三角形,涉及面積公式,正弦的倍角公式,應(yīng)用正弦定理將邊化角,屬綜合性基礎(chǔ)題.20.(1)當(dāng)時(shí),公路的長(zhǎng)度最短為千米;(2)(千米).【解析】

(1)設(shè)切點(diǎn)的坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義求出切線的方程為,根據(jù)兩點(diǎn)間距離得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長(zhǎng)度.【詳解】(1)由題可知,設(shè)點(diǎn)的坐標(biāo)為,又,則直線的方程為,由此得直線與坐標(biāo)軸交點(diǎn)為:,則,故,設(shè),則.令,解得=10.當(dāng)時(shí),是減函數(shù);當(dāng)時(shí),是增函數(shù).所以當(dāng)時(shí),函數(shù)有極小值,也是最小值,所以,此時(shí).故當(dāng)時(shí),公路的長(zhǎng)度最短,最短長(zhǎng)度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點(diǎn)睛】本題考查利用導(dǎo)數(shù)解決實(shí)際的最值問(wèn)題,涉及構(gòu)造函數(shù)法以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和極值,還考查正余弦定理的實(shí)際應(yīng)用,還考查解題分析能力和計(jì)算能力.21.(1)(2)【解析】

(1)利用降次公式、輔助角公式化簡(jiǎn)解析式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)遞增區(qū)間.(2)先由求得,利用正弦定理得到,結(jié)合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數(shù),,由,得.所以的單調(diào)遞增區(qū)間為.(2)因

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論