蘇州大學(xué)《試驗設(shè)計與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
蘇州大學(xué)《試驗設(shè)計與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
蘇州大學(xué)《試驗設(shè)計與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
蘇州大學(xué)《試驗設(shè)計與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
蘇州大學(xué)《試驗設(shè)計與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁蘇州大學(xué)

《試驗設(shè)計與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在構(gòu)建數(shù)據(jù)分析模型時,過擬合是一個常見的問題。假設(shè)一個模型在訓(xùn)練集上表現(xiàn)非常好,但在測試集上表現(xiàn)很差,這可能表明發(fā)生了什么?()A.模型過于簡單,無法捕捉數(shù)據(jù)中的復(fù)雜模式B.模型過于復(fù)雜,對訓(xùn)練數(shù)據(jù)過度擬合C.數(shù)據(jù)中存在噪聲,影響了模型的性能D.測試集的數(shù)據(jù)質(zhì)量有問題2、在數(shù)據(jù)分析中,數(shù)據(jù)分析的結(jié)果需要進(jìn)行解釋和評估。以下關(guān)于結(jié)果解釋和評估的描述中,錯誤的是?()A.結(jié)果解釋應(yīng)該結(jié)合問題的背景和目的,進(jìn)行合理的分析和推斷B.結(jié)果評估應(yīng)該使用客觀的指標(biāo)和方法,進(jìn)行準(zhǔn)確的評價和判斷C.結(jié)果解釋和評估可以根據(jù)需要進(jìn)行調(diào)整和修改,以滿足不同的需求D.結(jié)果解釋和評估只需要關(guān)注數(shù)據(jù)分析的結(jié)果,無需考慮數(shù)據(jù)的質(zhì)量和可靠性3、在數(shù)據(jù)分析中,若要檢驗數(shù)據(jù)是否來自于某個特定的分布,應(yīng)使用哪種檢驗方法?()A.卡方擬合優(yōu)度檢驗B.Kolmogorov-Smirnov檢驗C.Shapiro-Wilk檢驗D.以上都是4、在數(shù)據(jù)分析中,聚類分析用于將數(shù)據(jù)分組。假設(shè)要對客戶進(jìn)行細(xì)分,以下關(guān)于聚類分析的描述,哪一項是不正確的?()A.K-Means聚類算法需要預(yù)先指定聚類的數(shù)量B.層次聚類可以生成層次結(jié)構(gòu)的聚類結(jié)果,便于觀察不同層次的分組情況C.聚類分析的結(jié)果只取決于算法和數(shù)據(jù),不受初始條件和參數(shù)的影響D.可以通過評估聚類的緊密度和分離度來選擇最優(yōu)的聚類方案5、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的配色方案選擇也很重要。假設(shè)要創(chuàng)建一個展示銷售數(shù)據(jù)的圖表,以下關(guān)于配色方案選擇的描述,正確的是:()A.隨意選擇喜歡的顏色,不考慮顏色的對比度和可讀性B.使用過于鮮艷和刺眼的顏色組合,以吸引注意力C.遵循色彩理論和設(shè)計原則,選擇對比度高、易于區(qū)分和視覺舒適的配色方案,使數(shù)據(jù)清晰可讀,并根據(jù)數(shù)據(jù)的性質(zhì)和重要性進(jìn)行顏色映射D.不考慮色盲和色弱人群的觀看體驗,只追求美觀6、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中聚類分析是一種常用的方法。以下關(guān)于聚類分析的描述中,錯誤的是?()A.聚類分析可以將數(shù)據(jù)分為不同的類別,使得同一類中的數(shù)據(jù)具有相似的特征B.聚類分析的結(jié)果可以用聚類中心和聚類半徑來表示C.聚類分析可以用于數(shù)據(jù)的分類和預(yù)測D.聚類分析的算法有多種,如k-means聚類、層次聚類等7、數(shù)據(jù)分析中,數(shù)據(jù)挖掘技術(shù)可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和規(guī)律。以下關(guān)于數(shù)據(jù)挖掘的說法中,錯誤的是?()A.數(shù)據(jù)挖掘可以使用多種算法,如決策樹、聚類、關(guān)聯(lián)規(guī)則挖掘等B.數(shù)據(jù)挖掘的結(jié)果需要進(jìn)行解釋和評估,以確定其有效性和實用性C.數(shù)據(jù)挖掘只適用于大規(guī)模數(shù)據(jù)集,對于小數(shù)據(jù)集沒有太大作用D.數(shù)據(jù)挖掘可以幫助企業(yè)做出更明智的決策,提高競爭力8、數(shù)據(jù)分析中的數(shù)據(jù)可視化有助于直觀理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)的銷售額分布情況,以下關(guān)于數(shù)據(jù)可視化選擇的描述,正確的是:()A.使用餅圖,因為它能清晰展示各地區(qū)銷售額占比B.采用折線圖,以反映銷售額隨地區(qū)的變化趨勢C.運(yùn)用柱狀圖,直觀比較不同地區(qū)銷售額的差異D.選擇箱線圖,全面展示銷售額的分布特征,包括四分位數(shù)和異常值9、數(shù)據(jù)分析在金融領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一家銀行要評估客戶的信用風(fēng)險。以下關(guān)于數(shù)據(jù)分析在金融中的描述,哪一項是不正確的?()A.可以建立信用評分模型,預(yù)測客戶違約的可能性B.分析市場趨勢,制定投資策略C.數(shù)據(jù)分析在金融領(lǐng)域的應(yīng)用完全沒有風(fēng)險,不會導(dǎo)致錯誤的決策D.監(jiān)測金融交易,防范欺詐行為10、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的挑戰(zhàn)有很多,其中數(shù)據(jù)質(zhì)量問題是一個重要的挑戰(zhàn)。以下關(guān)于數(shù)據(jù)質(zhì)量問題的描述中,錯誤的是?()A.數(shù)據(jù)質(zhì)量問題可能會導(dǎo)致數(shù)據(jù)挖掘結(jié)果的錯誤和不可靠B.數(shù)據(jù)質(zhì)量問題可以通過數(shù)據(jù)清洗和驗證等方法來解決C.數(shù)據(jù)質(zhì)量問題只與數(shù)據(jù)的來源有關(guān),與數(shù)據(jù)挖掘的算法和技術(shù)無關(guān)D.數(shù)據(jù)質(zhì)量問題需要在數(shù)據(jù)挖掘的整個過程中進(jìn)行關(guān)注和處理11、對于一個不平衡的數(shù)據(jù)集(某一類別的樣本數(shù)量遠(yuǎn)多于其他類別),以下哪種處理方法可能會提高模型性能?()A.過采樣B.欠采樣C.生成對抗網(wǎng)絡(luò)D.以上都是12、數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)數(shù)據(jù)中項之間的關(guān)聯(lián)關(guān)系。假設(shè)我們要分析超市購物籃數(shù)據(jù)。以下關(guān)于關(guān)聯(lián)規(guī)則挖掘的描述,哪一項是錯誤的?()A.支持度表示項集在數(shù)據(jù)集中出現(xiàn)的頻率B.置信度表示在包含前提項集的情況下,包含結(jié)果項集的概率C.提升度大于1表示關(guān)聯(lián)規(guī)則是有效的,小于1表示是無效的D.關(guān)聯(lián)規(guī)則挖掘只能發(fā)現(xiàn)簡單的兩兩關(guān)聯(lián)關(guān)系,不能處理復(fù)雜的關(guān)聯(lián)模式13、對于一個大型數(shù)據(jù)集,若要快速篩選出符合特定條件的數(shù)據(jù),以下哪種數(shù)據(jù)庫操作更有效?()A.全表掃描B.索引查找C.排序D.分組14、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的有效性可以通過多種方式進(jìn)行評估。以下關(guān)于數(shù)據(jù)分析方法有效性評估的說法中,錯誤的是?()A.數(shù)據(jù)分析方法的有效性可以通過與實際情況進(jìn)行對比來評估B.數(shù)據(jù)分析方法的有效性可以通過與其他方法進(jìn)行比較來評估C.數(shù)據(jù)分析方法的有效性可以通過模擬數(shù)據(jù)進(jìn)行測試來評估D.數(shù)據(jù)分析方法的有效性一旦確定就不能再進(jìn)行調(diào)整和改進(jìn)15、數(shù)據(jù)分析中常用的統(tǒng)計方法有很多,其中描述性統(tǒng)計是一種基礎(chǔ)的方法。以下關(guān)于描述性統(tǒng)計的描述中,錯誤的是?()A.描述性統(tǒng)計可以用來概括數(shù)據(jù)的集中趨勢、離散程度和分布形狀B.描述性統(tǒng)計可以通過計算均值、中位數(shù)、標(biāo)準(zhǔn)差等指標(biāo)來實現(xiàn)C.描述性統(tǒng)計只能對數(shù)值型數(shù)據(jù)進(jìn)行分析,對于分類型數(shù)據(jù)無法處理D.描述性統(tǒng)計是數(shù)據(jù)分析的第一步,為進(jìn)一步的分析提供基礎(chǔ)16、某電商平臺想要了解商品銷量與廣告投入之間的關(guān)系,收集了大量數(shù)據(jù)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,不正確的是?()A.檢查數(shù)據(jù)的完整性B.直接刪除所有缺失值C.處理異常值D.對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化17、對于一個時間序列數(shù)據(jù),若要預(yù)測未來一段時間的數(shù)值,以下哪種預(yù)測方法通常不依賴歷史數(shù)據(jù)的季節(jié)性特征?()A.移動平均法B.指數(shù)平滑法C.線性回歸法D.季節(jié)性指數(shù)法18、在進(jìn)行數(shù)據(jù)融合時,將多個數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)我們有來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合的描述,正確的是:()A.直接將不同數(shù)據(jù)源的數(shù)據(jù)簡單拼接,無需考慮數(shù)據(jù)格式和字段的一致性B.數(shù)據(jù)融合可能會引入重復(fù)和不一致的數(shù)據(jù),不需要處理C.建立統(tǒng)一的數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)清洗規(guī)則,能夠提高數(shù)據(jù)融合的質(zhì)量D.數(shù)據(jù)融合只適用于結(jié)構(gòu)相同的數(shù)據(jù)源,對于不同結(jié)構(gòu)的數(shù)據(jù)源無法進(jìn)行融合19、在進(jìn)行數(shù)據(jù)挖掘時,分類算法中的決策樹算法具有易于理解和解釋的優(yōu)點。以下哪個因素不會影響決策樹的構(gòu)建?()A.特征選擇B.樣本數(shù)量C.數(shù)據(jù)的缺失值D.計算資源的大小20、假設(shè)要對海量圖像數(shù)據(jù)進(jìn)行分析,以下關(guān)于圖像數(shù)據(jù)分析方法的描述,正確的是:()A.直接使用傳統(tǒng)的數(shù)據(jù)分析方法處理圖像數(shù)據(jù),效果良好B.基于深度學(xué)習(xí)的圖像識別算法能夠自動提取圖像的特征C.圖像數(shù)據(jù)的分辨率對分析結(jié)果沒有影響D.不需要對圖像數(shù)據(jù)進(jìn)行預(yù)處理,直接輸入模型進(jìn)行分析21、在數(shù)據(jù)分析中,數(shù)據(jù)隱私和安全是必須要考慮的問題。假設(shè)我們處理的是敏感的個人數(shù)據(jù)。以下關(guān)于數(shù)據(jù)隱私和安全的描述,哪一項是不正確的?()A.應(yīng)該采取加密、匿名化等技術(shù)手段保護(hù)數(shù)據(jù)的隱私B.遵守相關(guān)的法律法規(guī),如數(shù)據(jù)保護(hù)法、隱私政策等C.只要數(shù)據(jù)在內(nèi)部使用,就不需要考慮數(shù)據(jù)隱私和安全問題D.對數(shù)據(jù)的訪問和使用進(jìn)行嚴(yán)格的權(quán)限管理,防止數(shù)據(jù)泄露22、在進(jìn)行數(shù)據(jù)可視化時,若要展示數(shù)據(jù)的分布情況,以下哪種圖表最為合適?()A.折線圖B.柱狀圖C.箱線圖D.餅圖23、數(shù)據(jù)分析中的數(shù)據(jù)標(biāo)注對于監(jiān)督學(xué)習(xí)算法至關(guān)重要。假設(shè)要對圖像數(shù)據(jù)進(jìn)行分類標(biāo)注,以下關(guān)于數(shù)據(jù)標(biāo)注方法的描述,正確的是:()A.讓非專業(yè)人員進(jìn)行標(biāo)注,不進(jìn)行質(zhì)量控制B.不制定標(biāo)注規(guī)范和標(biāo)準(zhǔn),導(dǎo)致標(biāo)注結(jié)果不一致C.組織專業(yè)的標(biāo)注團(tuán)隊,制定明確的標(biāo)注規(guī)范和流程,進(jìn)行質(zhì)量檢查和審核,確保標(biāo)注數(shù)據(jù)的準(zhǔn)確性和一致性D.認(rèn)為數(shù)據(jù)標(biāo)注是簡單的任務(wù),不需要投入太多資源和時間24、在數(shù)據(jù)分析的倫理和法律方面,需要遵循一定的原則和規(guī)范。假設(shè)你處理的是包含個人敏感信息的數(shù)據(jù),以下關(guān)于數(shù)據(jù)處理的做法,哪一項是最符合倫理和法律要求的?()A.在未獲得授權(quán)的情況下,將數(shù)據(jù)用于其他商業(yè)目的B.對數(shù)據(jù)進(jìn)行匿名化處理,確保無法追溯到個人身份C.忽視數(shù)據(jù)的隱私保護(hù),認(rèn)為分析結(jié)果更重要D.隨意分享數(shù)據(jù)給第三方機(jī)構(gòu)25、在數(shù)據(jù)分析中,若要比較不同組數(shù)據(jù)的離散程度,以下哪個指標(biāo)可以使用?()A.方差B.均值C.中位數(shù)D.眾數(shù)二、簡答題(本大題共4個小題,共20分)1、(本題5分)闡述數(shù)據(jù)分析師應(yīng)具備的技能和素質(zhì),包括技術(shù)能力、業(yè)務(wù)理解能力、溝通能力等,并說明如何培養(yǎng)和提升這些能力。2、(本題5分)簡述數(shù)據(jù)隱私保護(hù)在數(shù)據(jù)分析中的重要性,介紹常見的數(shù)據(jù)隱私保護(hù)技術(shù)和方法,如加密、匿名化等。3、(本題5分)數(shù)據(jù)分析中常使用回歸分析來研究變量之間的關(guān)系。請解釋線性回歸和非線性回歸的區(qū)別,并說明在何種情況下應(yīng)選擇非線性回歸模型。4、(本題5分)在處理交通數(shù)據(jù)時,常用的數(shù)據(jù)分析方法和技術(shù)有哪些?解釋擁堵預(yù)測、路徑規(guī)劃等概念,并舉例說明應(yīng)用。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)一家玩具店收集了玩具銷售數(shù)據(jù)、兒童年齡層次、玩具流行趨勢等。采購更受孩子歡迎的玩具,提升店鋪業(yè)績。2、(本題5分)某在線游戲公司保存了玩家的游戲數(shù)據(jù),包含游戲時長、游戲等級、充值金額、游戲模式等。分析玩家在不同游戲模式下的游戲時長與充值金額的關(guān)系。3、(本題5分)某電商平臺的母嬰產(chǎn)品類目擁有銷售數(shù)據(jù),包括品牌、產(chǎn)品類別、價格、銷量、用戶年齡等。分析不同年齡段用戶對母嬰產(chǎn)品品牌和類別的選擇偏好。4、(本題5分)某在線珠寶銷售平臺記錄了珠寶銷售數(shù)據(jù)、消費者年齡性別、款式喜好等。推出符合市場需求的珠寶款式和營銷策略。5、(本題5分)某在線教育平臺的編程培訓(xùn)類目保存了學(xué)生數(shù)據(jù),包括課程難度、學(xué)習(xí)進(jìn)度、作業(yè)完成情況、就業(yè)情況等。分析課程難度與學(xué)習(xí)進(jìn)度和就業(yè)情況的關(guān)系。四、論述題(本大題共3個小題,共30分)1、(本題10分)在制造業(yè)的供應(yīng)鏈協(xié)同中,如何利用數(shù)據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論