下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁黑龍江建筑職業(yè)技術學院《應用軟件基礎》
2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能在醫(yī)療領域的應用越來越廣泛。假設一個醫(yī)療人工智能系統(tǒng)被用于疾病診斷,它通過分析大量的醫(yī)療影像和患者數(shù)據(jù)來給出診斷建議。以下關于這種應用的描述,正確的是:()A.該系統(tǒng)能夠完全替代醫(yī)生的診斷,因為其基于大數(shù)據(jù)的分析結果更準確B.醫(yī)生仍需對系統(tǒng)的診斷結果進行最終判斷和綜合考量,因為存在數(shù)據(jù)偏差和模型局限性C.這種系統(tǒng)只適用于常見疾病的診斷,對于罕見病無能為力D.醫(yī)療人工智能系統(tǒng)的診斷結果不受數(shù)據(jù)質量和算法選擇的影響2、人工智能中的生成對抗網(wǎng)絡(GAN)在圖像生成和數(shù)據(jù)增強等方面表現(xiàn)出色。假設要使用GAN生成逼真的人臉圖像,以下關于GAN的描述,正確的是:()A.GAN的訓練過程非常穩(wěn)定,不會出現(xiàn)模式崩潰等問題B.生成器和判別器的能力不需要平衡,只要其中一個強大就能生成好的圖像C.GAN可以通過不斷的對抗訓練,學習到真實數(shù)據(jù)的分布,從而生成逼真的新樣本D.GAN只能用于圖像生成,不能應用于其他領域的數(shù)據(jù)生成3、人工智能中的模型評估指標對于衡量模型性能至關重要。假設要評估一個二分類模型的性能,除了準確率之外,以下哪種指標在某些情況下更能反映模型的實際效果,特別是當類別分布不均衡時?()A.召回率B.F1值C.精確率D.均方誤差4、在人工智能的圖像生成任務中,例如生成逼真的人臉圖像或風景圖像,假設需要生成具有高度細節(jié)和真實感的圖像。以下哪種技術或模型在圖像生成方面表現(xiàn)較為出色?()A.生成對抗網(wǎng)絡(GANs),通過對抗訓練生成圖像B.自編碼器(Autoencoder),壓縮和解壓縮圖像C.傳統(tǒng)的圖像處理算法,如濾波和邊緣檢測D.隨機生成像素值來創(chuàng)建圖像5、在人工智能的醫(yī)療應用中,疾病診斷是一個重要的方向。假設我們要利用人工智能技術輔助醫(yī)生診斷心臟病,需要對大量的醫(yī)療數(shù)據(jù)進行分析。那么,以下關于人工智能在醫(yī)療診斷中的作用,哪一項是不準確的?()A.能夠發(fā)現(xiàn)醫(yī)生難以察覺的細微模式和關聯(lián)B.可以完全取代醫(yī)生的診斷,獨立做出準確的判斷C.有助于提高診斷的效率和準確性D.需要結合醫(yī)生的臨床經(jīng)驗和專業(yè)知識進行綜合判斷6、在人工智能的自動駕駛倫理問題中,例如在面臨不可避免的事故時如何做出決策,以下哪種思考角度和原則可能是需要被考慮的?()A.功利主義原則B.道義論原則C.權利主義原則D.以上都是7、人工智能在醫(yī)療領域有廣泛的應用前景。假設要開發(fā)一個能夠輔助醫(yī)生診斷疾病的系統(tǒng),需要整合患者的病歷、檢查報告和影像資料等信息。以下關于數(shù)據(jù)隱私和安全的考慮,哪一項是最為重要的?()A.采用加密技術對患者數(shù)據(jù)進行加密存儲和傳輸,確保數(shù)據(jù)不被泄露B.允許醫(yī)療數(shù)據(jù)在未經(jīng)患者同意的情況下用于研究和開發(fā)新的診斷模型C.忽略數(shù)據(jù)隱私和安全問題,優(yōu)先考慮系統(tǒng)的診斷準確性D.將患者數(shù)據(jù)存儲在公共云服務上,以降低存儲成本8、在人工智能的研究中,算法的選擇和優(yōu)化至關重要。以下關于人工智能算法的敘述,不正確的是()A.不同的算法適用于不同的問題和數(shù)據(jù)特點,需要根據(jù)具體情況進行選擇B.算法的優(yōu)化可以提高計算效率和模型性能,例如通過調整參數(shù)、使用更高效的計算框架等C.新的算法不斷涌現(xiàn),但傳統(tǒng)的算法在某些情況下仍然具有不可替代的優(yōu)勢D.一旦選擇了一種算法,就不能再進行更改和優(yōu)化,否則會影響模型的穩(wěn)定性9、在人工智能的發(fā)展中,機器學習是一個重要的分支。假設一個醫(yī)療團隊想要利用機器學習來預測某種疾病的發(fā)病風險,他們收集了大量患者的基因數(shù)據(jù)、生活習慣、病史等多維度信息。在選擇機器學習算法時,需要考慮數(shù)據(jù)的特點、模型的復雜度和預測的準確性等因素。以下哪種機器學習算法可能最適合這個任務?()A.決策樹算法,通過對特征的逐步劃分進行預測B.線性回歸算法,建立變量之間的線性關系進行預測C.支持向量機算法,尋找最優(yōu)分類超平面進行分類預測D.樸素貝葉斯算法,基于概率計算進行分類10、在人工智能的推薦系統(tǒng)中,例如為用戶推薦電影、音樂或商品,需要考慮用戶的歷史行為、偏好和當前的情境信息。假設一個用戶的興趣偏好經(jīng)常變化,以下哪種方法能夠更好地適應這種動態(tài)的用戶偏好?()A.基于協(xié)同過濾的推薦,依賴其他用戶的行為B.基于內容的推薦,分析物品的特征C.混合推薦,結合多種推薦方法D.始終使用固定的推薦策略,不進行調整11、在人工智能的模型壓縮中,假設需要在不顯著降低模型性能的前提下減少模型的參數(shù)數(shù)量和計算量。以下哪種方法可以實現(xiàn)這一目標?()A.剪枝技術,去除不重要的連接和參數(shù)B.量化技術,降低參數(shù)的精度C.知識蒸餾,將大模型的知識傳遞給小模型D.以上都是12、在人工智能的模型訓練中,過擬合和欠擬合是常見的問題。假設正在訓練一個用于預測房價的人工智能模型,以下關于過擬合和欠擬合的描述,正確的是:()A.過擬合是指模型在訓練數(shù)據(jù)上表現(xiàn)差,在新數(shù)據(jù)上表現(xiàn)好;欠擬合則相反B.模型越復雜,越不容易出現(xiàn)過擬合問題,因此應該盡量增加模型的復雜度C.正則化技術可以有效地防止過擬合,而增加訓練數(shù)據(jù)量可以解決欠擬合問題D.過擬合和欠擬合只與模型的架構有關,與數(shù)據(jù)和訓練過程無關13、在人工智能的音頻處理中,語音增強是一項重要任務。假設要提高在嘈雜環(huán)境中錄制的語音的清晰度,以下關于語音增強技術的描述,正確的是:()A.簡單的濾波方法就能夠完全去除噪聲,恢復清晰的語音B.語音增強技術只對特定類型的噪聲有效,對復雜的噪聲環(huán)境無能為力C.結合深度學習算法和聲學模型,可以更有效地從噪聲中提取有用的語音信息D.語音增強的效果不受原始語音質量和噪聲強度的影響14、人工智能中的聯(lián)邦學習技術旨在保護數(shù)據(jù)隱私的同時實現(xiàn)模型訓練。假設多個機構想要聯(lián)合訓練一個人工智能模型,同時保護各自的數(shù)據(jù)隱私,以下關于聯(lián)邦學習的描述,正確的是:()A.聯(lián)邦學習可以在不共享原始數(shù)據(jù)的情況下,直接合并各機構的模型參數(shù)進行訓練B.聯(lián)邦學習過程中不存在通信開銷和安全風險C.采用加密技術和模型參數(shù)交換的方式,聯(lián)邦學習能夠在保護數(shù)據(jù)隱私的前提下協(xié)同訓練模型D.聯(lián)邦學習只適用于小規(guī)模的數(shù)據(jù)和簡單的模型,對于大規(guī)模和復雜的任務不適用15、人工智能在醫(yī)療領域有廣泛的應用前景。假設要開發(fā)一個能夠輔助醫(yī)生診斷疾病的系統(tǒng),需要對大量的醫(yī)療數(shù)據(jù)進行分析。以下哪種技術可能有助于提高診斷的準確性?()A.數(shù)據(jù)挖掘B.虛擬現(xiàn)實C.增強現(xiàn)實D.3D打印二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述人工智能在智能培訓課程設計中的技術。2、(本題5分)談談人工智能中的自然語言處理技術。3、(本題5分)談談支持向量機算法的優(yōu)勢。三、操作題(本大題共5個小題,共25分)1、(本題5分)運用自然語言生成技術,為智能寫作助手生成文章的開頭、結尾和段落過渡句。根據(jù)給定的主題和寫作風格要求,生成富有創(chuàng)意和連貫性的文本內容,評估生成內容的質量和與主題的契合度。2、(本題5分)在Python中,運用螢火蟲算法解決一個優(yōu)化問題。定義螢火蟲的發(fā)光強度和吸引機制,展示算法的收斂情況。3、(本題5分)在PyTorch中,構建一個基于圖神經(jīng)網(wǎng)絡(GNN)的模型,對社交網(wǎng)絡中的關系進行預測。研究不同的圖結構和節(jié)點特征對預測結果的影響。4、(本題5分)使用Python中的機器學習庫Scikit-learn,加載一個標準的數(shù)據(jù)集(如鳶尾花數(shù)據(jù)集),進行數(shù)據(jù)預處理,包括數(shù)據(jù)清洗、特征選擇等操作,然后使用合適的分類算法進行訓練和預測。5、(本題5分)利用Python中的PyTorch框架,構建一個長短時記憶網(wǎng)絡(LSTM)模型,對文本情感進行分類。使用預訓練的詞向量模型,對文本數(shù)據(jù)進行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 感動中國先進人物事跡(11篇)
- 開展節(jié)能宣傳活動總結
- 愚人節(jié)活動策劃(集錦15篇)
- 高中生物教師提升職稱答辯題目精 選8題
- 關于彩虹小知識
- 2016山西道法試卷+答案+解析
- 超聲引導下坐骨神經(jīng)阻滯聯(lián)合股神經(jīng)阻滯在糖尿病患者膝關節(jié)以下截肢手術中的應用效果分析
- 產(chǎn)業(yè)研究報告-中國糧油行業(yè)發(fā)展現(xiàn)狀、市場規(guī)模、投資前景分析(智研咨詢)
- 二零二五年度航空航天投資理財合同模板3篇
- 銷售渠道的選擇與管理培訓
- 課題申報書:GenAI賦能新質人才培養(yǎng)的生成式學習設計研究
- 潤滑油知識-液壓油
- 2024年江蘇省中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 駱駝祥子-(一)-劇本
- 全國醫(yī)院數(shù)量統(tǒng)計
- 《中國香文化》課件
- 2024年醫(yī)美行業(yè)社媒平臺人群趨勢洞察報告-醫(yī)美行業(yè)觀察星秀傳媒
- 第六次全國幽門螺桿菌感染處理共識報告-
- 天津市2023-2024學年七年級上學期期末考試數(shù)學試題(含答案)
- 經(jīng)濟學的思維方式(第13版)
- 盤錦市重點中學2024年中考英語全真模擬試卷含答案
評論
0/150
提交評論