版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年人教版高一數(shù)學(xué)上冊(cè)月考試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五總分得分評(píng)卷人得分一、選擇題(共7題,共14分)1、設(shè)集合A={y|y=a2+1|a∈N},B={y|y=b2+10|b∈N};則A∩B中元素的個(gè)數(shù)為()
A.1個(gè)。
B.2個(gè)。
C.3個(gè)。
D.大于3個(gè)。
2、【題文】已知圓C:從動(dòng)圓M:上的動(dòng)點(diǎn)P向圓C引切線,切點(diǎn)分別是E,F,則()A.B.C.D.3、【題文】當(dāng)時(shí),在同一坐標(biāo)系中函數(shù)與的圖象是()4、【題文】集合____。A.B.C.D.(0,+∞)5、下列四個(gè)關(guān)系式中,正確的是()A.?∈{a}B.a?{a,b}C.b?{a,b}D.{a}?{a,b}6、已知集合A={x|x2-4=0},集合B={x|ax=1},若B?A,則實(shí)數(shù)a的值是()A.0B.C.0或D.0或7、已知直線l的斜率k=2,并且經(jīng)過一點(diǎn)(2,-3)則直線的點(diǎn)斜式方程為()A.y-3=2(x-2)B.y+3=2(x-2)C.y-2=k(x+3)D.y-2=2(x-3)評(píng)卷人得分二、填空題(共6題,共12分)8、【題文】函數(shù)y=1-的最大值與最小值的和為____.9、【題文】已知函數(shù)f(x)=x2+2︱x︱-15,定義域是值域是[-15,0],則滿足條件的整數(shù)對(duì)有____對(duì).10、【題文】過點(diǎn)(-1,2)的直線l被圓截得的弦長(zhǎng)為則直線l的斜率為____.11、已知集合A={(x,y)|x2=y+1,|x|<2,x∈Z},試用列舉法表示集合A=______.12、函數(shù)f(x)是y=ax+1(a>0且a≠1)的反函數(shù),則函數(shù)f(x)恒過定點(diǎn)______.13、如圖,已知長(zhǎng)方體ABCD-A1B1C1D1中,AB=2AD=2AA1=2,那么DD1和BC1所成的角是______度.評(píng)卷人得分三、證明題(共5題,共10分)14、如圖;已知AB是⊙O的直徑,P是AB延長(zhǎng)線上一點(diǎn),PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:
(1)AD=AE
(2)PC?CE=PA?BE.15、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.16、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.17、已知D是銳角△ABC外接圓劣弧的中點(diǎn);弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.18、如圖,設(shè)△ABC是直角三角形,點(diǎn)D在斜邊BC上,BD=4DC.已知圓過點(diǎn)C且與AC相交于F,與AB相切于AB的中點(diǎn)G.求證:AD⊥BF.評(píng)卷人得分四、計(jì)算題(共4題,共8分)19、計(jì)算:.20、已知t1、t2是二次函數(shù)s=-3t2+6t+f的圖象與x軸兩交點(diǎn)的橫坐標(biāo),且x=10t1,y=10t2,那么y與x間的函數(shù)關(guān)系式為____,其函數(shù)圖象在第____象限內(nèi).21、已知扇形的圓心角為150°,半徑為2cm,扇形的面積是____cm2.22、已知:(b-c)2=(a-b)(c-a),且a≠0,則=____.評(píng)卷人得分五、綜合題(共4題,共20分)23、在直角坐標(biāo)系xoy中,一次函數(shù)的圖象與x軸、y軸分別交于點(diǎn)B和點(diǎn)A,點(diǎn)C的坐標(biāo)是(0,1),點(diǎn)D在y軸上且滿足∠BCD=∠ABD.求D點(diǎn)的坐標(biāo).24、如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點(diǎn)F(4;0);與y軸正半軸交于點(diǎn)E(0,4),邊長(zhǎng)為4的正方形ABCD的頂點(diǎn)D與原點(diǎn)O重合,頂點(diǎn)A與點(diǎn)E重合,頂點(diǎn)C與點(diǎn)F重合;
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2;若正方形ABCD在平面內(nèi)運(yùn)動(dòng),并且邊BC所在的直線始終與x軸垂直,拋物線與邊AB交于點(diǎn)P且同時(shí)與邊CD交于點(diǎn)Q.設(shè)點(diǎn)A的坐標(biāo)為(m,n)
①當(dāng)PO=PF時(shí);分別求出點(diǎn)P和點(diǎn)Q的坐標(biāo)及PF所在直線l的函數(shù)解析式;
②當(dāng)n=2時(shí);若P為AB邊中點(diǎn),請(qǐng)求出m的值;
(3)若點(diǎn)B在第(2)①中的PF所在直線l上運(yùn)動(dòng);且正方形ABCD與拋物線有兩個(gè)交點(diǎn),請(qǐng)直接寫出m的取值范圍.
25、已知平面區(qū)域上;坐標(biāo)x,y滿足|x|+|y|≤1
(1)畫出滿足條件的區(qū)域L0;并求出面積S;
(2)對(duì)區(qū)域L0作一個(gè)內(nèi)切圓M1,然后在M1內(nèi)作一個(gè)內(nèi)接與此圓與L0相同形狀的圖形L1,在L1內(nèi)繼續(xù)作圓M2;經(jīng)過無數(shù)次后,求所有圓的面積的和.
(提示公式:)26、已知開口向上的拋物線y=ax2+bx+c與x軸交于A(-3;0);B(1,0)兩點(diǎn),與y軸交于C點(diǎn),∠ACB不小于90°.
(1)求點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);
(2)求系數(shù)a的取值范圍;
(3)設(shè)拋物線的頂點(diǎn)為D;求△BCD中CD邊上的高h(yuǎn)的最大值.
(4)設(shè)E,當(dāng)∠ACB=90°,在線段AC上是否存在點(diǎn)F,使得直線EF將△ABC的面積平分?若存在,求出點(diǎn)F的坐標(biāo);若不存在,說明理由.參考答案一、選擇題(共7題,共14分)1、B【分析】
由方程a2+1=b2+10,整理化簡(jiǎn)得出(a+b)(a-b)=9=9×1=3×3=1×9,∵a,b∈N,∴得:a=5,b=4;此時(shí)y=26;
或得:a=3,b=0;此時(shí)y=10,∴A∩B中元素的個(gè)數(shù)為2.
故選B.
【解析】【答案】根據(jù)交集的定義,得出方程a2+1=b2+10的整數(shù)解a,b.再求出公共元素;結(jié)合元素的互異性,得出個(gè)數(shù)即可.
2、A【分析】【解析】
試題分析:根據(jù)題意圓C:其圓心為(4,0),半徑為2,從動(dòng)圓M:那么動(dòng)圓的圓心(4+77),那么可知兩個(gè)圓心的距離為定值,且為連接兩圓心與動(dòng)圓的交點(diǎn)P,此時(shí)滿足取得最小值,且為故選A.
考點(diǎn):本試題考查了直線與圓的位置關(guān)系的知識(shí)。
點(diǎn)評(píng):對(duì)于利用直線與圓相切的問題,一般要用到切線長(zhǎng)定理,以及直線與圓的相切時(shí)特殊的直角三角形關(guān)系,借助于圓心坐標(biāo)和動(dòng)點(diǎn)坐標(biāo)發(fā)現(xiàn)規(guī)律,兩點(diǎn)的距離為定值,來分析最小值?!窘馕觥俊敬鸢浮緼3、A【分析】【解析】略【解析】【答案】A4、D【分析】【解析】略【解析】【答案】D5、D【分析】解:對(duì)于A:?∈{a};空集是任何非集合的真子集,符合用“?或?”,∴A不對(duì).
對(duì)于B:元素與集合的關(guān)系是屬于或者不屬于,二者必選其一.a(chǎn)∈{a,b};∴B不對(duì).
對(duì)于C:b與{a,b}是集合與元素之間的關(guān)系;符號(hào)用“∈”,∴C不對(duì).
對(duì)于D:{a}?{a,b}是集合與集合的關(guān)系;是子集關(guān)系.∴D對(duì).
故選D.
根據(jù)集合與元素的關(guān)系進(jìn)行判斷即可.
本題考查了元素與集合,集合與集合之間的關(guān)系判斷.屬于基礎(chǔ)題.【解析】【答案】D6、C【分析】解:∵x2-4=0?x=±2;∴A={-2,2};
∵B?A;∴B有兩種種情況。
1;a=0;B=?,B?A;
2、a≠0,=±2?a=±B?A;
綜上a=0或±.
故選C
通過解方程求出方程的解;用列舉法表示出集合A,再分類討論集合B的情況求a的值.
本題考查集合關(guān)系中的參數(shù)取值問題.解決這類問題常用分類討論思想.【解析】【答案】C7、B【分析】解:由點(diǎn)斜式可得方程:y+3=2(x-2);
故選:B.
利用點(diǎn)斜式即可得出.
本題考查了直線的方程求法、點(diǎn)斜式,考查了計(jì)算能力,屬于基礎(chǔ)題.【解析】【答案】B二、填空題(共6題,共12分)8、略
【分析】【解析】令f(x)=
則f(x)為奇函數(shù),
故f(x)max+f(x)min=0,
∴ymax+ymin=2.【解析】【答案】29、略
【分析】【解析】略【解析】【答案】710、略
【分析】【解析】設(shè)過點(diǎn)的直線方程為即
即
由已知得,解得,直線的斜率為或
考點(diǎn):直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式.【解析】【答案】或11、略
【分析】解:∵集合A={(x,y)|x2=y+1;|x|<2,x∈Z};
∴A={(-1;0),(0,-1),(1,0)}.
故答案為:{(-1;0),(0,-1),(1,0)};
利用集合性質(zhì)直接求解.
本題考查集合的列舉法的表示,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.【解析】{(-1,0),(0,-1),(1,0)}12、略
【分析】解:∵函數(shù)y=ax+1(a>0且a≠1)的圖象恒過定點(diǎn)(0;2);
函數(shù)f(x)是y=ax+1(a>0且a≠1)的反函數(shù);
∵互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)于直線y=x對(duì)稱;
∴函數(shù)f(x)恒過定點(diǎn)(2;0).
故答案為:(2;0).
由指數(shù)函數(shù)的圖象恒過定點(diǎn)(0,1),可得y=ax+1(a>0且a≠1)的圖象恒過定點(diǎn)(0;2),結(jié)合互為反函數(shù)的兩個(gè)函數(shù)的圖象之間的關(guān)系可得答案.
本題考查了反函數(shù),考查了互為反函數(shù)的兩個(gè)函數(shù)圖象之間的關(guān)系,是基礎(chǔ)題.【解析】(2,0)13、略
【分析】解:因?yàn)橐阎L(zhǎng)方體ABCD-A1B1C1D1;
所以CC1∥DD1,所以∠DD1和BC1所成的角是BC1C;
又AB=2AD=2AA1=2;
所以tan∠BC1C=
所以∠BC1C=60°;
故答案為:60.
由已知幾何體為長(zhǎng)方體,所以容易得到∠DD1和BC1所成的角是BC1C;利用直角三角形的三角函數(shù)解之.
本題考查了長(zhǎng)方體的性質(zhì)運(yùn)用以及異面直線所成的角的求法;關(guān)鍵是將空間角轉(zhuǎn)化為平面角.【解析】60三、證明題(共5題,共10分)14、略
【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;
即可得到結(jié)論;
(2)根據(jù)三角形相似的判定易證Rt△PCE∽R(shí)t△PAD,Rt△EBC∽R(shí)t△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,
∵PC是⊙O的切線;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽R(shí)t△PAD;
∴PC:PA=CE:AD;
又∵AB為⊙O的直徑;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽R(shí)t△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC?CE=PA?BE.15、略
【分析】【分析】(1)連接AF,并延長(zhǎng)交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長(zhǎng)交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點(diǎn)共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點(diǎn)共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.16、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個(gè)外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.17、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點(diǎn);
∴cosC==.
答:cosC的值是.
(3)BF過圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.18、略
【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;
則AC=AE;AB=5DE;
又∵G是AB的中點(diǎn);
∴AG=ED.
∴ED2=AF?AE;
∴5ED2=AF?AE;
∴AB?ED=AF?AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.四、計(jì)算題(共4題,共8分)19、略
【分析】【分析】求出=2,sin45°=,(3-π)0=1,=4,代入求出即可.【解析】【解答】解:原式=2-4×+1+4;
=2-2+1+4;
=5.20、略
【分析】【分析】由于t1、t2是二次函數(shù)s=-3t2+6t+f的圖象與x軸兩交點(diǎn)的橫坐標(biāo),利用根與系數(shù)的關(guān)系可以得到t1+t2=2,又x=10t1,y=10t2,利用同底數(shù)冪的乘法法則計(jì)算即可解決問題.【解析】【解答】解:∵t1、t2是二次函數(shù)s=-3t2+6t+f的圖象與x軸兩交點(diǎn)的橫坐標(biāo);
∴t1+t2=2;
而x=10t1,y=10t2;
∴xy=10t1×10t2=10t1+t2=102=100;
∴y=(x>0).
∵100>0;x>0;
∴其函數(shù)圖象在第一象限內(nèi).
故答案為:y=(x>0),一.21、略
【分析】【分析】根據(jù)扇形的面積=,直接進(jìn)行計(jì)算即可解答.【解析】【解答】解:根據(jù)扇形的面積公式;得
S扇==π(cm2).
故答案為.22、略
【分析】【分析】根據(jù)題意將原式變形,然后利用添項(xiàng)法可配成完全平方式,再利用偶次方的非負(fù)性即可得出答案.【解析】【解答】解:;
化簡(jiǎn):4a2-4a(b+c)+(b+c)2=0,;
即:;
∴=2,則=;
故答案為:.五、綜合題(共4題,共20分)23、略
【分析】【分析】先根據(jù)一次函數(shù)的解析式求出點(diǎn)A及點(diǎn)B的坐標(biāo),利用勾股定理解出線段BC、AB的坐標(biāo),分一下三種情況進(jìn)行討論,(1)若D點(diǎn)在C點(diǎn)上方時(shí),(2)若D點(diǎn)在AC之間時(shí),(3)若D點(diǎn)在A點(diǎn)下方時(shí),每一種情況下求出點(diǎn)D的坐標(biāo)即可.【解析】【解答】解:∵A;B是直線與y軸、x軸的交點(diǎn);
令y=0,解得;
∴;
令x=0;解得y=-3;
∴A(0;-3);
由勾股定理得,;
(1)若D點(diǎn)在C點(diǎn)上方時(shí);則∠BCD為鈍角;
∵∠BCD=∠ABD;又∠CDB=∠ADB;
∴△BCD∽△ABD;
∴;
設(shè)D(0;y),則y>1;
∵;
∴;
∴8y2-22y+5=0;
解得或(舍去);
∴點(diǎn)D的坐標(biāo)為(0,);
(2)若D點(diǎn)在AC之間時(shí);則∠BCD為銳角;
∵∠ABD=∠BCD;又∠BAD=∠CAB;
∴△ABD∽△ACB,∴;
設(shè)D(0,y),則-3<y<1,又;
∴;
整理得8y2-18y-5=0;
解得或(舍去);
∴D點(diǎn)坐標(biāo)為(0,-);
(3)若D點(diǎn)在A點(diǎn)下方時(shí);有∠BAC=∠ABD+∠ADB>∠ABD;
又顯然∠BAC<∠BCD;
∴D點(diǎn)在A點(diǎn)下方是不可能的.
綜上所述,D點(diǎn)的坐標(biāo)為(0,)或(0,-).24、略
【分析】【分析】(1)已知拋物線的對(duì)稱軸是y軸;頂點(diǎn)是(0,4),經(jīng)過點(diǎn)(4,0),利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)①過點(diǎn)P作PG⊥x軸于點(diǎn)G;根據(jù)三線合一定理可以求得G的坐標(biāo),則P點(diǎn)的橫坐標(biāo)可以求得,把P的橫坐標(biāo)代入拋物線的解析式,即可求得縱坐標(biāo),得到P的坐標(biāo),再根據(jù)正方形的邊長(zhǎng)是4,即可求得Q的縱坐標(biāo),代入拋物線的解析式即可求得Q的坐標(biāo),然后利用待定系數(shù)法即可求得直線PF的解析式;
②已知n=2;即A的縱坐標(biāo)是2,則P的縱坐標(biāo)一定是2,把y=2代入拋物線的解析式即可求得P的橫坐標(biāo),根據(jù)AP=2,且AP∥y軸,即可得到A的橫坐標(biāo),從而求得m的值;
(3)假設(shè)B在M點(diǎn)時(shí),C在拋物線上或假設(shè)當(dāng)B點(diǎn)在N點(diǎn)時(shí),D點(diǎn)同時(shí)在拋物線上時(shí),求得兩個(gè)臨界點(diǎn),當(dāng)B在MP和FN之間移動(dòng)時(shí),拋物線與正方形有兩個(gè)交點(diǎn).【解析】【解答】解:(1)由拋物線y=ax2+c經(jīng)過點(diǎn)E(0;4),F(xiàn)(4,0)
,解得;
∴y=-x2+4;
(2)①過點(diǎn)P作PG⊥x軸于點(diǎn)G;
∵PO=PF∴OG=FG
∵F(4;0)∴OF=4
∴OG=OF=×4=2;即點(diǎn)P的橫坐標(biāo)為2
∵點(diǎn)P在拋物線上。
∴y=-×22+4=3;即P點(diǎn)的縱坐標(biāo)為3
∴P(2;3)
∵點(diǎn)P的縱坐標(biāo)為3;正方形ABCD邊長(zhǎng)是4,∴點(diǎn)Q的縱坐標(biāo)為-1
∵點(diǎn)Q在拋物線上,∴-1=-x2+4
∴x1=2,x2=-2(不符題意;舍去)
∴Q(2;-1)
設(shè)直線PF的解析式是y=kx+b;
根據(jù)題意得:;
解得:,
則直線的解析式是:y=-x+6;
②當(dāng)n=2時(shí);則點(diǎn)P的縱坐標(biāo)為2
∵P在拋物線上,∴2=-x2+4
∴x1=2,x2=-2
∴P的坐標(biāo)為(2,2)或(-2;2)
∵P為AB中點(diǎn)∴AP=2
∴A的坐標(biāo)為(2-2,2)或(-2-2;2)
∴m的值為2-2或-2-2;
(3)假設(shè)B在M點(diǎn)時(shí);C在拋物線上,A的橫坐標(biāo)是m,則B的橫坐標(biāo)是m+4;
代入直線PF的解析式得:y=-(m+4)+6=-m;
則B的縱坐標(biāo)是-m,則C的坐標(biāo)是(m+4,-m-4).
把C的坐標(biāo)代入拋物線的解析式得:-m-4=-(m+4)2+4,解得:m=-1-或-1+(舍去);
當(dāng)B在E點(diǎn)時(shí);AB經(jīng)過拋物線的頂點(diǎn),則E的縱坐標(biāo)是4;
把y=4代入y=-x+6,得4=-x+6,解得:x=;
此時(shí)A的坐標(biāo)是(-,4),E的坐標(biāo)是:(;4),此時(shí)正方形與拋物線有3個(gè)交點(diǎn).
當(dāng)點(diǎn)B在E點(diǎn)時(shí),正方形與拋物線有兩個(gè)交點(diǎn),此時(shí)-1-<m<-;
當(dāng)點(diǎn)B在E和P點(diǎn)之間時(shí),正方形與拋物線有三個(gè)交點(diǎn),此時(shí):-<x<-2;
當(dāng)B在P點(diǎn)時(shí);有兩個(gè)交點(diǎn);
假設(shè)當(dāng)B點(diǎn)在N點(diǎn)時(shí);D點(diǎn)同時(shí)在拋物線上時(shí);
同理,C的坐標(biāo)是(m+4,-m-4),則D點(diǎn)的坐標(biāo)是:(m,-m-4);
把D的坐標(biāo)代入拋物線的解析式得:-m-4=-m2+4,解得:m=3+或3-(舍去);
當(dāng)B在F與N之間時(shí),拋物線與正方形有兩個(gè)交點(diǎn).此時(shí)0<m<3+.
故m的范圍是:-1-<m-或m=2或0<m<3+.25、略
【分析】【分析】(1)根據(jù)絕對(duì)值的性質(zhì)去掉絕對(duì)值號(hào),作出|x|+|y|≤1的線性規(guī)劃區(qū)域即可得到區(qū)域L0;然后根據(jù)正方形的面積等于對(duì)角線乘積的一半進(jìn)行求解即可;
(2)求出M1、M2的面積,然后根據(jù)求解規(guī)律,后一個(gè)圓得到面積等于前一個(gè)圓的面積的,然后列式,再根據(jù)等比數(shù)列的求和公式求解即可.【解析】【解答】解:(1)如圖;|x|+|y|≤1可化為;
x+y≤1;x-y≤,-x+y≤1,-x-y≤1;
∴四邊形ABCD就是滿足條件的區(qū)域L0是正方形;
S=×AC×BD=×(1+1)×(1+1)=2;
(2)如圖;∵A0=1;
∴⊙M1的半徑為:1×sin45°=;
∴內(nèi)切圓M1的面積是:π()2=π;
同理可得:⊙M2的半徑為:×sin45°=()2;
∴內(nèi)切圓M2的面積是:π[()2]2=π×=π()2;
⊙M3的半徑為:()2×sin45°=()3;
內(nèi)切圓M3的面積是:π[()3]2=π×()2=π()3;
以此類推,經(jīng)過n次后,⊙Mn的面積為π()n;
∴所有圓的面積的和=π+π()2+π()3++π()n==π[1-()n].
故答案為:(1)2,(2)π[1-()n].26、略
【分析】【分析】(1)由拋物線y=ax2+bx+c過點(diǎn)A(-3;0),B(1,0),得出c與a的關(guān)系,即可得出C點(diǎn)坐標(biāo);
(2)利用已知得出△AOC∽△COB;進(jìn)而求出OC的長(zhǎng)度,即可得出a的取值范圍;
(3)作DG⊥y軸于點(diǎn)G,延長(zhǎng)DC交x軸于點(diǎn)H,得出拋物線的對(duì)稱軸為x=-1,進(jìn)而求出△DCG∽△HCO,得出OH=3,過B作BM⊥DH,垂足為M,即BM=h,根據(jù)h=HBsin∠OHC求出0°<∠OHC≤30°,得到0<sin∠OHC≤;即可求出答案;
(4)連接CE,過點(diǎn)N
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024離婚協(xié)議要點(diǎn)及范本
- 2024石材礦山荒料資源整合與開發(fā)合同3篇
- 2025年度鴨苗繁育基地建設(shè)與運(yùn)營(yíng)管理合同3篇
- 2025年度船舶船員體檢與健康保險(xiǎn)合同3篇
- 二零二五年搬家物流運(yùn)輸合同樣本6篇
- 2024版建設(shè)工程施工合同ef0203
- 二零二五年度房地產(chǎn)項(xiàng)目土地置換合同3篇
- 2025年草原生態(tài)保護(hù)與草原旅游開發(fā)一體化合同3篇
- 2024版深圳股權(quán)轉(zhuǎn)讓合同協(xié)議書范本
- 2025年度高空樓頂廣告設(shè)計(jì)與施工一體化服務(wù)合同4篇
- 深圳2024-2025學(xué)年度四年級(jí)第一學(xué)期期末數(shù)學(xué)試題
- 中考語文復(fù)習(xí)說話要得體
- 《工商業(yè)儲(chǔ)能柜技術(shù)規(guī)范》
- 華中師范大學(xué)教育技術(shù)學(xué)碩士研究生培養(yǎng)方案
- 醫(yī)院醫(yī)學(xué)倫理委員會(huì)章程
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 風(fēng)浪流耦合作用下錨泊式海上試驗(yàn)平臺(tái)的水動(dòng)力特性試驗(yàn)
- 高考英語語法專練定語從句含答案
- 有機(jī)農(nóng)業(yè)種植技術(shù)操作手冊(cè)
- 【教案】Unit+5+Fun+Clubs+大單元整體教學(xué)設(shè)計(jì)人教版(2024)七年級(jí)英語上冊(cè)
- 2020年的中國(guó)海外工程示范營(yíng)地申報(bào)材料及評(píng)分標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論