




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
初升高必備基本運算能力:絕對值,乘法公式,因式分解
(-)絕對值知識梳理:
(1)數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值.
a(a>0)
⑵數(shù)的絕對值是他本身,負數(shù)的絕對值是他的相反數(shù),0的絕對值是0,即時=,0(。=0).
-a(a<0)
⑶個負數(shù)比較大小,絕對值大的反而小.
(4)個絕對值不等式:|五|<4(4>0)。一.</<。;|x|>a(a>0)<^>x<-a^x>a.
⑸兩個數(shù)的差的絕對值的幾何意義:表示在數(shù)軸上,數(shù)。和數(shù)6之間的距離.
二、例題講解:
例1解不等式:,一1|十,一3|>4.
三、強化練習
I.填空:
(1)若國=5,則尸;若兇=|-4|,則x=.
(2)如果時+例=5,且0=-1,則6=;若|1_4=2,則°=.
2.選擇題:
下列敘述正確的是()
(A)若回,則4=匕(B)若問〉例,則a
(C)若avb,則向<網(wǎng)(D)若同=例,則〃=±方
3.化簡:|x—5|—|2x—13|(x>5).
(二)因式分解知識梳理:
一、知識梳理:
我們在初中已經(jīng)學習過的乘法公式:
(1)平方差公式(a+b)(a-b)=a2-b2,
(2)完全平方公式(a±b)2=a2±2ab+b2i
我們還可以通過證明得到下列一些乘法公式:
(3)立方和公式(a+b)(a2-ab+b2)=a3+b3;
(4)立方差公式(a-b)(a2+ab+b2)=a3-b2;
(5)三數(shù)和平方公式(a+b+c)2=a2+b2+c2+2(ab+bc+ac);
(6)兩數(shù)和立方公式(a+b)3=a3+3a2b+3ab2+護;
(7)兩數(shù)差立方公式(a-b)3=a3-3a2b+3ab2-b3.
二、例題講解:
【公式1](a+b+c)2=a2+b2+c2+2ab+2bc+2ca
【例1】計算:+
【公式2](a+b)(a2"卜占2)=。3+〃(立方和公式)
證明:(〃+/?)(/-ab+b2)=a:'-a2b-^ab2+a2b-ab2+/=/+/
說明:請同學用文字語言表述公式2.
【例2】計算:(2a+b)(4a2-2ab+b2)=8a3+b3
【公式3】(a-b)(a2+ab+b2)=a3-b3(立方差公式)
1.計算
(1)(3x+2y)(9x2-6xy+4y2)=
(2)(2x-3)(4x2+6xy+9)=
小C211、
(3)—m——\(—m+—m+—)=
(23j469
(4)(a+b)(a2-ab+b2)(a-b)(a2+ab+b2)=
2.利用立方和、立方差公式進行因式分解
(1)27m3-n3=
(2)27m3--n3=
8
(3)X3-125=
(4)m6-n6=
【公式4](a+b)3=a^b3+3a2b^-3ab2
【公式5】(a-b)3=a3-3a2b+3ab2-b3
【例3】計算:
(1)(4+/w)(16-4w+/w2)(2)-+—mn+—n1)
5225104
(3)(a+2)(a-2)(a4+4a2+16)(4)(x24-2xy+y2Xx2-xy+y2)2
【例4】已知f-3x+l=0,求/+與
?的值.
x
【例5】已知a+Z?+c=0,求4d■+1)+6(1+』)+c(L+,)的值.
hccaab
二、例題講解:
[例1]用立方和或立方差公式分解下列各多項式:
(1)8+d(2)0.125-27b3
【例2】分解因式:
(1)3。%-81力4(2)a1-ab6
【例3】把2ox-10ay+5by-Zu分解因式.
【例4】把"(。2一〃2)一(〃2一加)4分解因式.
[例5]把爐-丫2+奴+。)分解因式.
【例6】把2爐+4孫+2y2-8z?分解因式.
一、知識梳理:十字相乘法
二、例題講解:
【例1】把下列各式因式分解:
(I)%2-7x4-6(2)%2+13x+36
【例2】把下列各式因式分解:
(1)x2+5x—24(2)%2—2x—15
【例3】把下列各式因式分解:
(1)x2+xy-6y2(2)(x2+x)~—8(x2+x)+12
三、例題講解:
【例1】把下列各式因式分解:
(1)x2-7x+6⑵x2+13x+36
【例2】把下列各式因式分解:
(1)x2+5x-24(2)x"-2x-15
【例3】把下列各式因式分解:
(1)x2+xy-6y2(2)(%2+x)~-8a2+>)+12
三、強化練習
1.把下列各式分解因式:
⑴4+27(2)8-m(3)—27%3+8
2.把下列各式分解因式:
(1)+x4(2)xn+3-xny3(3)y2(x2-2x)3+y
3.把下列各式分解因式:
(1)x2-3x+2(2)x1-6x-27(3)nr-4mn-5n2
4.把下列各式分解因式:
22
(1)加一IOo?+]6o?(2)a*?+_6/H(3)(x-2x)-9
8x*+26xy—15y2(5)7(a+b)——5(“+/?)—2
5.把下列各式分解囚式:
(1)3ax-3ay+xy—y2(2)Sx3+4x2-2x-1(3)5x2-15x4-2xy-6y
(4)4Ay+1-4x2—y2(5)ci4b+a'b"——cib4(6)—2x3+1
⑺x2(x+l)-y(xy+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理系統(tǒng)開發(fā)合作協(xié)議
- 農(nóng)業(yè)科技推廣應用案例分析
- 維修服務委托合同
- 金融產(chǎn)品開發(fā)合作協(xié)議
- 旅游行業(yè)游客安全與責任免除合同
- 學生自制動漫電影小感悟
- 昆蟲記的讀后感
- 食品營養(yǎng)與健康功能性食品知識點題集
- 寵物行業(yè)智能門店與健康管理方案
- 市場營銷策略效果評估表格模板(行業(yè)A)
- 2025年哈爾濱鐵道職業(yè)技術學院單招職業(yè)適應性測試題庫1套
- 國網(wǎng)公司安全責任清單
- 2025屆高考百日誓師大會校長發(fā)言稿
- 膀胱癌護理疑難病例討論
- 2025年春期六年級班主任工作計劃
- 2025年江西電力職業(yè)技術學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 譯林版小學英語四年級上冊單詞表(分單元含音標)
- 2025年江蘇無錫市屬國有企業(yè)招聘筆試參考題庫含答案解析
- 2025新人教版語文七年級下冊《第四單元》大單元整體教學設計2022課標
- 2024年非高危行業(yè)生產(chǎn)經(jīng)營單位主要負責人及安全管理人員安全生產(chǎn)知識和管理能力試題庫附答案
- 《慢性腎臟病相關心肌病綜合管理中國專家共識(2024版)》解讀
評論
0/150
提交評論