![2024利用生成式AI增強(qiáng)自主系統(tǒng)的安全性和韌性白皮書(英文版)-TII_第1頁](http://file4.renrendoc.com/view11/M02/2F/12/wKhkGWejPoGAV9GTAAD6sN88jJg830.jpg)
![2024利用生成式AI增強(qiáng)自主系統(tǒng)的安全性和韌性白皮書(英文版)-TII_第2頁](http://file4.renrendoc.com/view11/M02/2F/12/wKhkGWejPoGAV9GTAAD6sN88jJg8302.jpg)
![2024利用生成式AI增強(qiáng)自主系統(tǒng)的安全性和韌性白皮書(英文版)-TII_第3頁](http://file4.renrendoc.com/view11/M02/2F/12/wKhkGWejPoGAV9GTAAD6sN88jJg8303.jpg)
![2024利用生成式AI增強(qiáng)自主系統(tǒng)的安全性和韌性白皮書(英文版)-TII_第4頁](http://file4.renrendoc.com/view11/M02/2F/12/wKhkGWejPoGAV9GTAAD6sN88jJg8304.jpg)
![2024利用生成式AI增強(qiáng)自主系統(tǒng)的安全性和韌性白皮書(英文版)-TII_第5頁](http://file4.renrendoc.com/view11/M02/2F/12/wKhkGWejPoGAV9GTAAD6sN88jJg8305.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
nsttut
EnhancingSecurity,Resilience,andSafetyofAutonomousSystemswithGenerativeAI
tii.ae
TableofContents
Sidebar:GenAImodels
4
GenAIUseCases
9
IndividualApplications
9
Self-Awareness
10
Anomalydetection
11
Autonomy
12
Adaptability
12
Predictivemaintenance
13
Faultmanagement
14
Fleet
16
Swarmintelligence
17
Swarmcoordination
19
Communicationresilience
21
Consensus
22
Human
23
Missionplanningandexecution
24
Human-machineteaming
25
Meta-learning
26
Datalabelingandsynthesis
27
Cybersecurity
28
Malwaredetection
29
Intrusiondetection:
31
Integratingthreatintelligence33
Policymanagement33
ThreatSimulation:34
Softwaresupplychainvisibility34
Challenges34
Cost35
Compute36
Adaptation36
Ethical/Regulatory36
Alignment36
Privacy36
Accuracy37
Size37
Newsecurityissues38
Conclusion38
Glossary41
sttut
Rapidadvancesinautonomoussystemsandedgeroboticshaveunlockedunprecedentedopportunitiesinindustriesfrommanufacturingandtransportationtohealthcareandexploration.Increasingcomplexityandconnectivityhavealsointroducednewchallengesinensuringsecurity,resilience,andsafety.Asedgerobotsintegrateintoourdailylivesandcriticalinfrastructures,itisimperativethatwedevelopinnovativeapproachesthatcanraisethesesystems’trustworthinessandreliabilitytonewlevels.
ThiswhitepaperexploresthetransformativepotentialofgenerativeAI(GenAI)toenhancethesecurity,resilience,andsafetyofautonomoussystemsandedgerobots.Wecanusethesecutting-edgetechnologiestomeettheuniquedistributedanddynamicchallengesofedgerobotics,tounlocknewlevelsofintelligence,adaptability,androbustness.
GenAImodelsproducenewcontentbyanalyzingpatternsinadataset.Theyderivecharacteristicprobabilitydistributionsandapplythesetocreatenewdatapatternsthatareconsistentwiththeoriginal“real”dataset.
EarliergenerationsofdiscriminativeAImodelsappliedconditionalprobabilitiestopredictoutcomesforpreviouslyunseendata.Theapproachisversatileandwell-suitedtoawiderangeofproblems,includingclassificationsandregressions.Theyexcelatdelineatingthedecisionboundariesthatdifferentiatebetweenvariousclassesorcategorieswithinthedataset.
Thegrowingranksofgenerativetechniquesincludethosebasedontransformersandtheresultinglargelanguagemodels(LLMs),GenerativeAdversarialNetworks(GANs),VariationalAutoencoders(VAEs),GenerativeFlowModels(GFM),andGenerativeDiffusionModels(GDM).ThesehaveallopenedexcitingnewavenuesofAIresearch—withapplicationstodroneswarmsandintrusiondetection,physicalcommunicationsecurity,semanticcommunication,andmobilenetworks
.1
TheTechnologyInnovationInstitute’sSecureSystemsResearchCenter(TII-SSRC,AbuDhabi,UAE,
https://www.tii.ae/secure-systems)
isworkingtoapplyGenAItoitsworkextendingZeroTrustarchitectures(developedforinformationsecurity)toeveryaspectofinformationsecurityincyber-physicalsystems.
Thus,SSRCconsidershowGenAIcanhelpguaranteesecurity,resilience,andsafetyfordrones,swarms,swarmsofswarms,autonomousterrestrialandmarinevehicles,commandsystems,andhuman/droneinteractions—andparticularlyinareaswhereGenAIoutperformstraditionalAI/MLapproaches.
Examplesinclude:
?Individualapplications:healthmonitoring,stateestimation,predictivemaintenance,anomalydetection,self-healing,navigation,andemergencylandings.
?Fleetapplications:Swarmcoordination,swarmintelligence,collectivedecision-making.
?Human/Droneinteractions:communicationresilience,missionplanning,human-computerinteraction.
?Cybersecurityandresilience:Intrusiondetection,malwareclassification,threatsimulation.
ThispaperwillfocusondronesbecauseSSRCisdoingsomuchworkinthisarea.Whatwelearnfromdronescanbeappliedmuchmoretoautonomousandcyber-physicalsystemsingeneral,includingcars,robots,embeddedsystems,andsmartcities.Bythesametoken,
lessonslearnedintheseareascanbefoldedintoSSRC’sresearch.
approachallowsorganizationstomoveawayfromphysicaldevicemanagementapproachesthatrequireemployeestocarrymultiplephones.
1M.Xuetal.,“UnleashingthePowerofEdge-CloudGenerativeAIinMobileNetworks:ASurveyofAIGCServices.”arXiv,Oct.31,2023.
doi:10.48550/arXiv.2303.16129
Sidebar:GenAImodels
AsurveyofspecificgenerativeAImodelingtechniques,withtheirstrengthsandlimitationsasappliedtodronesafety,security,andresilience.
PopularexcitementovergenerativeAImodelshasbeendrivenbyhighlypublicizednewserviceslikeChatGPT,whichcreateauthoritative-soundingresponsestotextpromptsusingspeciallytrainedLLMs.
LargeLanguageModelsareAIsystemstrainedonvasttextdatasets.TheyuseDeepLearningtechniques,particularlyastructureknownasaTransformer,to“understand”andgeneratehuman-liketextbasedonthepatternsthey'velearned.LLMsanalyzetherelationshipsandcontextsinthetrainingdata.Theyuseavarietyoftechniquestobuildsimplifiedrepresentationsofthedata,allowingthemtomakeassociationsandcorrelationsbetweentheoriginaldataelements.Thesemodelsletthemcomposeresponsesthatcanmimichumanwritingstylesandcoverdiversetopics.VisualAIs,likeDALL-EandStableDiffusion,compilenewimagesfromtextandimageprompts.
LLMsarewidelyused,andwidelyuseful,increatingcontent,code,translations,summaries,syntheticdata,andtostructureunstructureddatafromtexts,documents,images,audio,andotherpromptdata.
Transformermodelsandtheservicesbuiltonthem—likeOpenAI’sChatGPT,Google’sGemini,andAnthropic’sClaude—haveattractedwidespreadattention,thankstotheirimpressiveabilitytocreatearticulate-seemingresponsestohumanprompts.These,andotherdomain-specificLLMsandSmallLanguageModels(SMLs),alsoshowpromiseforsupportinganalysis,research,anddevelopmenttoimprovedronesafety,securityandresilience.
ParallelingtheseveryvisibleAIdevelopments,however,hasbeenalmostadecadeofprogressonnewclassesofGenerativeAImodelscouldautomateandacceleraterepresentation-building.Whilegenerativeapplicationsattractthemostattentions,thesenewmodelsalsoaredrivingadvancesinanalyzingdataandinteractingwiththeworldaroundus.OthergenerativeAImodels—GenerativeAdversarialNetworks,VariationalAutoencoders,GenerativeDiffusionModels,andNormalizingFlowModels—thoughrelativelyunknown,canmakesubstantialcontributionstodronesecurity,safety,andresilience.
TransformerModels:Introducedin2017totranslatebetweenEnglishandFrenchtexts,TransformerModelsexcelatcapturinglong-rangedependenciesandcorrelationswithinunstructureddata
.2
Transformersleverageanovel“attentionmechanism”tolearntheconnectionsbetweenwordstohelpcreateembeddingsautomatically.Priortechniquesrequiredtranslatingrawtextintoavectorrepresentationusingaseparatemodel.Transformerscanbuildcomplexrepresentationsandlearnintricateconnectionsthroughtheirlayeredarchitecture,manner.,allowingresearcherstoprocesslargebodiesofunlabeledtextanddeveloplargelanguagemodelswithbillionsofparameters.Subsequentinnovationshavesupporteddocumentsummarization,composingquestion/answerassociationsacrosslargedatasets,codegeneration,in-depthanalysis,intrusiondetection,malwaredetection,andtranslatingcontrolsysteminstructionsacrossroboticarms.Theapproach’skeyadvantageisdistillingcontextfromcomplexdatasets.Challengesincludehallucination,longertrainingtime,slowerinference-building,heaviercomputationrequirements,andlargermodelsizescomparedtoothertechniques.
2A.Vaswanietal.,“AttentionIsAllYouNeed.”arXiv,Aug.01,2023.
doi:10.48550/arXiv.1706.03762.
GenerativeAdversarialNetworks(GANs):Theseweredevelopedin2014tocreaterealisticsyntheticnumbers,faces,andanimalimages
.3
GANspittwoneuralnetworksagainsteachother:oneisrewardedforgeneratingmorerealisticcontent,andthesecondisrewardedfordetectingfakecontent.Inthiscompetition,thegeneratorimprovesitsabilitytocreaterealisticoutputsthatcanfoolthediscriminator.GANsarewidelyusedincontentgeneration.Sincethefirstversionsweredesignedtoworkwithimages,researchersarenowfindingcreativewaystotranslatedata,suchascodeornetworklogs,intoimagessuitableforGANprocessing.GANsaregoodforrealisticsyntheticdatasetsthatcanbeusedtoimproveautonomoussystemsandcybersecurityalgorithms.They,too,however,sufferfromfailureslikemodecollapseorcatastrophicforgetting.
3I.J.Goodfellowetal.,“GenerativeAdversarialNetworks.”arXiv,Jun.10,2014.doi:10.48550/arXiv.1406.2661.
VariationalAutoencoder(VAE):VAEswereintroducedin2014toimproveinferencesdrawnfromacontinuouslyvaryingdatastream
.4
Thetechniquehelpsfindefficientwaystorepresentdataandcanbeusedtocompressdataordetectanomaliesandthreats.TrainingVAEsprocessinvolvesteachingasetofencodersanddecoderstotranslaterawdataintoanintermediatelatentspacewithadifferentprobabilitydistribution.VAEscanbeusedindependentlyinapplicationslikeanomalydetection,designingbetterencodingschemes,dataaugmentation,andimagegeneration.Inaddition,theyareoftenusedtopre-structuredataforotheralgorithms,includingGANs,toimprovetheirresults.
GenerativeDiffusionModel(GDF):GDFsemergedin2015toimprovelearning,sampling,inferences,andevaluationsthatwereinformedbynon-equilibriumthermodynamicsmodeling
.5
Thetechniqueaddsnoisetoasample(suchasanimage)andthenautomatesthedenoisingprocesstorevealthedata’sunderlyingstructure.Slightvariationscanleadtovalidnewtrainingdatasets.GDFsarewidelyusedinimagegenerationandcanimprovesignalclassificationinvariousdroneusecases.However,thetechniquerequireshighersamplingtimesanddemandsamorecomplexarchitecturethanGANsandVAEs.
NormalizingFlowModels(NFMs):Thesewereintroducedbyresearcherstomakecomplexdatasimplertoworkwith
.6
Thesemodelstakeeasy-to-understanddistributions,likeanormalbellcurve,andtransformthemstepbystep.Eachstepisreversible,meaningwecanalwaysgobacktothestartifneeded.Thisprocess,calleda“flow,”movesfromasimplebeginningtoanendthat
4D.P.KingmaandM.Welling,“Auto-EncodingVariationalBayes.”arXiv,Dec.10,2022.doi:10.48550/arXiv.1312.6114.
5Yang,Ling,etal."Diffusionmodels:Acomprehensivesurveyofmethodsandapplications."ACMComputingSurveys56.4(2023):1-39.
/doi/10.1145/3626235
6Kobyzev,Ivan,SimonJDPrince,andMarcusA.Brubaker."Normalizingflows:Anintroductionandreviewofcurrentmethods."IEEEtransactionsonpatternanalysisandmachineintelligence43.11(2020):3964-3979.
/abstract/document/9089305/authors
resemblesthecomplicatedtargetdataset.Bydoingthis,itispossibletostudyandusethedatamoreeffectively.NFMshavebeenusedtogeneratehandwrittennumbers,images,etc.Newerusecasesincludeenhancedclassificationandencodingschemes.Thetrainingprocesscreatesamodelthattransformstheprobabilitydistributionofadatasetintoamorecomplex,fullyreversibledistribution.NFMscan,however,requirehighercomputationandtrainingtimesthantechniqueslikeGANsandVAEs.
ThefollowingfiguresummarizesthemainGenAITechniquesandtheirapplicationsinthefieldofZeroTrustforautonomoussystems.
GenAIUseCases
Theproliferationofdrone-technologyhasbroughtchallengesthatspancrossbetweendomains—individual,fleet,humancontrol,andcybersecurity.Theirgrowthandcomplexitydemandconstantinnovationtoredoubletheirtrustworthinessandreliability.
Thefollowingapplications—whetherderivedfromUnmannedAerialVehicle(UAV)anddroneresearchorimportedfromotherdomains—haveimportantimplicationsforthefutureofUAVsandotherautonomoussystems.Note,too,thatmanyoftheseareearly-stageprojects,includedtogiveaflavorwhatGenAItoolsmightaccomplishastechniquesevolve.
GenAIshowstremendouspotentialforimprovingZeroTrustframeworkstoenhancesecurity,resilience,andsafetyinindividualautonomoussystems,suchasdrones,self-drivingcars,
robots,andembeddedsystems.Usecasesunderinvestigationincludeboostingself-
awareness,anomalydetection,autonomousdriving,predictivemaintenance,faultmanagement,self-healing,andlandingsafely.
Self-Awareness
Opportunity:Efficientlytranslatenoisy,blurry,andinconsistentdatatounderstandthedrone'scurrentstate—e.g.,compensatingformotionblurwhiletryingtodetectobstacles.
Thefoundationofdronehealthisaccuratelycapturingandmakingsenseofitscurrentstate—includingtheconditionofitscurrenthardware,itsapplications,itsphysicallocation,anditssecurityposture.Intherealworld,thiscangetmessy,asvideofeedssuffermotionblur,GPSdatajitters,inertialguidancedatalosecalibration,andnoiseorgapsdegradeinternalmonitoringdata.
Stateestimationiscrucialtoautonomousnavigationanddecision-making,andrawdatastreamsmustbeaccuratelycorrelatedwithposition,velocity,andorientation
.7
GenerativeAIcanhelpfillinmissingdataandfusedatafrommultiplesourcestoimprovestateestimation
.8
InnovationsinGenAIalgorithmslikeGANs,VAEs,andtraditionalMLalgorithmslikeLSTMcanfillinthesegaps,preservingvehiclesafetyviafaultdetection,predictivemaintenance,faultmanagementandsafe-landingprotocols.Forexample,innovativeGANapproachescanfillinmissingdataandmakeiteasiertofusedatastreamstocreateamoreaccuratestateassessment
,9
helpcorrelateinternallogdatawithacousticanalysis
,10
andidentifypotentialmechanicalissues
.11
Researchershavealsodevelopedtechniquesforgeneratingestimated-statevariablesusingConditionalGANs(CGANs)forindividualdronesanddroneswarms
.12
7T.D.Barfoot,Stateestimationforrobotics.CambridgeUniversityPress,2017.
8Liu,Guangyuan,NguyenVanHuynh,HongyangDu,DinhThaiHoang,DusitNiyato,KunZhu,JiawenKang,ZehuiXiong,AbbasJamalipour,andDongInKim.“GenerativeAIforUnmannedVehicleSwarms:Challenges,ApplicationsandOpportunities.”arXiv,February28,2024.
/10.48550/arXiv.2402.18062.
9Y.He,S.Chai,andZ.Xu,"Anovelapproachforstateestimationusinggenerativeadversarialnetwork,"in2019IEEEInternationalConferenceonSystems,ManandCybernetics(SMC),2019,pp.2248-2253.
/document/8914585
10Y.Wang,A.Vinogradov,“ImprovingtheperformanceofconvolutionalGANusinghistory-stateensembleforunsupervisedearlyfaultdetectionwithacousticemissionsignalsAppl.Sci.,13(5)(2023),p.3136,doi:10.3390/APP13053136
11S.Zheng,A.Farahat,andC.Gupta,“GenerativeAdversarialNetworksforFailurePrediction.”arXiv,Oct.04,2019.Accessed:Mar.15,2024.[Online].Available:
/abs/
1910.02034
12.A.He,C.Luo,X.Tian,andW.Zeng,"AtwofoldSiamesenetworkforreal-timeobjecttracking,"inProceedingsoftheIEEEconferenceoncomputervisionandpatternrecognition,2018,pp.4834-4843.
/document/8578606
Anomalydetection
Opportunity:Improveanalysisofdronesensordatatoidentifyabnormalconditions.
Moreaccurate,multi-dimensionalsystem-staterecordscanalsohelpidentifyanomaliesrelevanttodronehealth.Forexample,VAEscanimprovefaultdetectionandisolation.Theycanalsoidentifythewarningsignsofstressinvarioussystems,toprioritizepredictivemaintenanceschedules.Typically,machine-learningclassificationalgorithmsaretrainedonmultipleclasses(suchasdatatagged“faulty”and“notfaulty”).Dataonrarerclasses,suchas“faulty”data,isoftenscarceinpublicdatasetsandtherealworld.Inthesecases,GenerativeAdversarialNetworks(GANs)canbevaluableinsynthesizingtheserareclasses—makingup“faulty”datathatlooks
conditions.Inaddition,researchersareexploringhowLLMscouldhelpbettercontextualizetooperateinnewenvironments
.13
Forexample,DriveLLMcombinesLLMwithtraditionalautonomousnavigationalgorithmstosupportbetterreasoninganddecision-makingwhenrespondingtoedgecases
.14
Researchersfoundthemethodcouldimproveproactivedecision-makinginunexpectedcircumstances.Anotherapplication,TypeFly,enhancescommunicationbetweenhumansanddronesthroughanaturallanguageinterfac
e15.
Suchlargelanguagemodelsmay,however,manifestsurfacebias,inaccuracies,and
hallucinationissuesthatrequireadditionalsafeguards.Similarly,MicrosoftResearchdiscussestheiradvancementsinintegratingChatGPTwithroboticstomakerobotcontrolmoreintuitive
throughnaturallanguage.They'veenabledChatGPTtounderstandandexecutetasksin
physicalenvironments,whichfacilitateseasierhuman-robotinteractionwithouttheneedfor
complexprogrammingknowledge.TheChatGPTteamhasdevelopeddesignprinciplesfor
languagemodelstosolveroboticstasks(involvingspecialpromptingstructuresandhigh-levelAPIs),andtheyhavedemonstratedhowChatGPTcanhandletaskslikeoperatingdronesandrobotarmsthroughuser-friendlycommandsandfeedback.Thedevelopersemphasizethe
importanceofsafetyandsimulationtestingbeforereal-worldapplication
.16
Adaptability
Opportunity:Improvetranslationofautonomoussystemssoftwaretorunacrossdifferenthardwaremakes,models,andconfigurations.
Autonomoussystemcontrollersmustbetrainedforaspecificmodelandconfiguration.Thiscancreatechallengeswhenupgradingindividualcomponentsoradoptingnewmodels.RTXisarobotcontrolLLMthatcantranslatecontrolpoliciestomanagedifferentroboticarmswithoutrefactoringthecontrolalgorithmsforthelatesthardware.Insometests,leveragingtheexperienceofothercontrollers,producedcontrolpoliciestheoutperformedthebestcontrolscustom-builtforanindividualarm
.17
13Wang,Lei,etal."Asurveyonlargelanguagemodelbasedautonomousagents."FrontiersofComputerScience18.6(2024):1-26.
/article/10.1007/s11704-024-40231-1
14Y.Cuietal.,“DriveLLM:ChartingthePathTowardFullAutonomousDrivingWithLargeLanguageModels,”IEEETransactionsonIntelligentVehicles,vol.9,no.1,pp.1450–1464,Jan.2024,doi:10.1109/TIV.2023.3327715.
15Chen,Guojun,XiaojingYu,andLinZhong."TypeFly:FlyingDroneswithLargeLanguageModel."arXivpreprintarXiv:2312.14950(2023).
/pdf/2312.14950
16Vemprala,Sai,etal."Chatgptforrobotics:Designprinciplesandmodelabilities."arXivpreprintarXiv:2306.17582(2023).
/abs/2306.17582
17O.X.-E.Collaborationetal.,“OpenX-Embodiment:RoboticLearningDatasetsandRT-XModels.”arXiv,Dec.17,2023.doi:10.48550/arXiv.2310.08864.
EarlyLLMs,likeGPT3.5,weretrainedonlargebodiesoftextscrapedfromtheInternet.Thesemodelslackedreal-worldexperiencethatcouldreflecthowvariousconfigurationsofrobotsandotherautonomoussystemsmakeandexecutedecisions.Researchintoroboticaffordancesexploreshowtoconstraineachrobotmodeltoactionsthatarefeasibleandappropriatefortheircapabilities
.18
ThisprovidesaframeworkforguidingLLMdevelopmentbasedonmorecompleteknowledgeofanoperationorprocedure.Atthesametime,thegroundingfunctiontranslatesthishigh-levelknowledgeintoexecutionbyaparticularrobotmodelinaspecifictargetenvironment.
Predictivemaintenance
Opportunity:Predictthependingbreakdownofdronecomponentstooptimizemaintenance,repair,andpart-replacementschedules.
Properlyrecordedandanalyzed,thedrone’ssensorandoperationaldatarevealimpendingmechanicalproblemsbeforebreakdownsoccur.Predictivealgorithmsletmaintenanceandrepaircrewsestablishregularschedules,prioritizemaintenance,andstayaheadofpartsinventories.Withadvancenoticeandplanning,evenmajorrepairsandreplacementscanbeperformedduringroutineservice.Theprobabilitiesofcostlybreakdownsand,worse,catastrophicfailuresdropsharply.Partscanbereplacedjust-before-needed,withservicelifecalculatedasafunctionofinstalled-partquality,servicetime,andoperationalprofile—slashingthecostsofreplacingperfectlysoundpartsonafixedschedule.
TraditionalMLalgorithmsoftenlieattheheartofpredictivemaintenance.Forexample,metricslikeRemainingUsefulLife(RUL)andHealthIndicatorscanidentifymotoranomalies.ButsyntheticdatageneratedbyGANsandotherGenAIalgorithmscanimprovethealgorithms’performance.
MultipleMLtechniques,includingGenAIalgorithms,canbecombinedtoimprovefaultdiagnosisandpredictivemaintenanceworkflows
.19
Forexample,GANtechniqueshavebeenappliedtoacousticsignalsfrommachinerytoidentifyandpredictfaultsnotidentifiedbyothermethods
.20
GANshavealsobeenusedtogeneratesyntheticmonitoring-datasetstohelptrainotherMLalgorithmstoimprovefailure-predictionandoptimizemaintenanceschedules
.21
GAN-FP,geneticadversarialnetworksforfailureprediction,specializeingenerating,balancing,andlabelingtrainingdatatoimproveperformanceofotherMLalgorithm
s22.
Faultmanagement
Opportunity:Identifyfaults,makedynamicadjustments,andeffectasafelandingwhenrequired.
18M.Ahnetal.,“DoAsICan,NotAsISay:GroundingLanguageinRoboticAffordances.”arXiv,Aug.16,2022.Accessed:Mar.21,2024.[Online].Available:
/abs/2204.01691
19Z.Mianetal.,“Aliteraturereviewoffaultdiagnosisbasedonensemblelearning,”EngineeringApplicationsofArtificialIntelligence,vol.127,p.107357,Jan.2024,doi:10.1016/j.engappai.2023.107357.
20Y.Wang,A.VinogradovImprovingtheperformanceofconvolutionalGANusinghistory-stateensembleforunsupervisedearlyfaultdetectionwithacousticemissionsignalsAppl.Sci.,13(5)(2023),p.3136,10.3390/APP13053136
21Q.Fu,H.Wang,J.Zhao,andX.Yan,“AMaintenance-predictionMethodforAircraftEnginesusingGenerativeAdversarialNetworks,”in2019IEEE5thInternationalConferenceonComputerandCommunications(ICCC),Dec.2019,pp.225–229.doi:10.1109/ICCC47050.2019.9064184.
22S.Zheng,A.Farahat,andC.Gupta,“GenerativeAdversarialNetworksforFailurePrediction.”arXiv,Oct.04,2019.Accessed:Mar.15,2024.[Online].Available:
/abs/1910.02034
GenAImodelscantransformdataforotherMLsystemstoimprovefaultdetectioninautonomoussystems.Forexample,VAEscanhelpcompressoperationaldataintomoreefficientrepresentationsforlongshort-termmemorynetworks(LSTN),atypeofrecurrentneuralnetwork
.23
Spatio-temporaltransformernetworkscancapturetrendsanddimensionsacrossdifferenttimescalestoimprovebatteryfaultdiagnosisandfailureprognosis,enhancingpredictivemaintenanceforUAVs.Forexample,theBERTerysystemcanspotsubtlechanges(changesinvisibletoearlierMLtechniques)thatsignalimpendingbatteryfailureasmuchas24hoursbeforethebatteriesfail
.24
GANshavebeenusedtogeneratetrainingsamplesandbuildinferencenetworksforaircraft-enginemonitoringdatatoimprovefailurepredictionsofotherMLalgorithms
.25
ResearchershavecombinedVAEsandLSTMtosupportcontinuouslearningfromvehiclesensordata,generatingsyntheticdataforwiderrangesoffaultscenarios.BytrainingotherMLalgorithmsonthiskindofsyntheticdata,Sadhuetal.achieved90%accuracyindetectingfaultsand99%accuracyinclassifyingthem.
Demandsforcomputingpowerandrelativelyslowexecutionspeedaretopconcernswhenrunningthesekindsofalgorithmsonlow-costhardware.OnesolutionistoportthecomputationstoFPGAs,whicharemorepower-efficientthanGPUs.ThisishowSadhuetal.achieveda40xspeedup(athalfthepowerconsumption)fortheirVAE-LSTMfaultdetectionalgorithm
.26
VAEscanalsobeusedtotrainmodelsthatidentifynormaloperation.Usingthistechnique,Dhakletal.achieveda95.6%accuracyindetectingdeviationsindicativeoffaultsandanomaliesnotrepresentedinthetrainingdataset
.27
Whenaproblemarisesinadroneoritscommunicationsnetwork,thedronemustlandsafelytoavoidsecondarydamage.Tominimizethisrisk,MonteCarloalgorithmshavebeenusedtocalculate“targetlevelsofsafety”(levelsofacceptablerisk)forvariouslandingzones
.28
Techniqueslikethiscouldbecombinedwithtransformerstomakecontext-awaredecisionswhenafaultforcesaUAVsystemtoselectanappropriatelandingzone.
Inthefuture,itmayalsobepossibletouseGenAItechniquesliketransformerstoletsystemsself-healinresponsetohardwarefailures,softwarebugs,ornetworkdisruption.Forexample,Khlaisamniangetal.haveproposedaframeworkforusingGenAItodetectanomalies,generatecode,debugit,andcreatereportsoncomputersystems
.29
Althoughstillinitsearlystages,thiswo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鹽城江蘇鹽城市大豐區(qū)住房和城鄉(xiāng)建設(shè)局招聘勞務(wù)派遣工作人員4人筆試歷年參考題庫附帶答案詳解
- 滁州2025年安徽滁州來安縣司法局招聘5名司法協(xié)理員筆試歷年參考題庫附帶答案詳解
- 湖北2025年湖北理工學(xué)院專項(xiàng)招聘97人筆試歷年參考題庫附帶答案詳解
- 2025年中國五礦機(jī)械市場調(diào)查研究報(bào)告
- 2025年膠水增稠劑項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國紙手帕行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年液壓基礎(chǔ)件項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國海水用柱塞泵行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年無針密閉輸液接頭項(xiàng)目可行性研究報(bào)告
- 懷化2024年湖南懷化市文聯(lián)所屬事業(yè)單位選調(diào)筆試歷年參考題庫附帶答案詳解
- 數(shù)學(xué)-河南省三門峽市2024-2025學(xué)年高二上學(xué)期1月期末調(diào)研考試試題和答案
- 2025年春新人教版數(shù)學(xué)七年級下冊教學(xué)課件
- 《心臟血管的解剖》課件
- 心肺復(fù)蘇課件2024
- 2024-2030年中國并購基金行業(yè)發(fā)展前景預(yù)測及投資策略研究報(bào)告
- 河道清淤安全培訓(xùn)課件
- 2024各科普通高中課程標(biāo)準(zhǔn)
- 7.3.1印度(第1課時(shí))七年級地理下冊(人教版)
- 教師培訓(xùn)校園安全
- 北師大版語文四年級下冊全冊教案
- 《湖南師范大學(xué)》課件
評論
0/150
提交評論