2024利用生成式AI增強(qiáng)自主系統(tǒng)的安全性和韌性白皮書(英文版)-TII_第1頁
2024利用生成式AI增強(qiáng)自主系統(tǒng)的安全性和韌性白皮書(英文版)-TII_第2頁
2024利用生成式AI增強(qiáng)自主系統(tǒng)的安全性和韌性白皮書(英文版)-TII_第3頁
2024利用生成式AI增強(qiáng)自主系統(tǒng)的安全性和韌性白皮書(英文版)-TII_第4頁
2024利用生成式AI增強(qiáng)自主系統(tǒng)的安全性和韌性白皮書(英文版)-TII_第5頁
已閱讀5頁,還剩72頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

nsttut

EnhancingSecurity,Resilience,andSafetyofAutonomousSystemswithGenerativeAI

tii.ae

TableofContents

Sidebar:GenAImodels

4

GenAIUseCases

9

IndividualApplications

9

Self-Awareness

10

Anomalydetection

11

Autonomy

12

Adaptability

12

Predictivemaintenance

13

Faultmanagement

14

Fleet

16

Swarmintelligence

17

Swarmcoordination

19

Communicationresilience

21

Consensus

22

Human

23

Missionplanningandexecution

24

Human-machineteaming

25

Meta-learning

26

Datalabelingandsynthesis

27

Cybersecurity

28

Malwaredetection

29

Intrusiondetection:

31

Integratingthreatintelligence33

Policymanagement33

ThreatSimulation:34

Softwaresupplychainvisibility34

Challenges34

Cost35

Compute36

Adaptation36

Ethical/Regulatory36

Alignment36

Privacy36

Accuracy37

Size37

Newsecurityissues38

Conclusion38

Glossary41

sttut

Rapidadvancesinautonomoussystemsandedgeroboticshaveunlockedunprecedentedopportunitiesinindustriesfrommanufacturingandtransportationtohealthcareandexploration.Increasingcomplexityandconnectivityhavealsointroducednewchallengesinensuringsecurity,resilience,andsafety.Asedgerobotsintegrateintoourdailylivesandcriticalinfrastructures,itisimperativethatwedevelopinnovativeapproachesthatcanraisethesesystems’trustworthinessandreliabilitytonewlevels.

ThiswhitepaperexploresthetransformativepotentialofgenerativeAI(GenAI)toenhancethesecurity,resilience,andsafetyofautonomoussystemsandedgerobots.Wecanusethesecutting-edgetechnologiestomeettheuniquedistributedanddynamicchallengesofedgerobotics,tounlocknewlevelsofintelligence,adaptability,androbustness.

GenAImodelsproducenewcontentbyanalyzingpatternsinadataset.Theyderivecharacteristicprobabilitydistributionsandapplythesetocreatenewdatapatternsthatareconsistentwiththeoriginal“real”dataset.

EarliergenerationsofdiscriminativeAImodelsappliedconditionalprobabilitiestopredictoutcomesforpreviouslyunseendata.Theapproachisversatileandwell-suitedtoawiderangeofproblems,includingclassificationsandregressions.Theyexcelatdelineatingthedecisionboundariesthatdifferentiatebetweenvariousclassesorcategorieswithinthedataset.

Thegrowingranksofgenerativetechniquesincludethosebasedontransformersandtheresultinglargelanguagemodels(LLMs),GenerativeAdversarialNetworks(GANs),VariationalAutoencoders(VAEs),GenerativeFlowModels(GFM),andGenerativeDiffusionModels(GDM).ThesehaveallopenedexcitingnewavenuesofAIresearch—withapplicationstodroneswarmsandintrusiondetection,physicalcommunicationsecurity,semanticcommunication,andmobilenetworks

.1

TheTechnologyInnovationInstitute’sSecureSystemsResearchCenter(TII-SSRC,AbuDhabi,UAE,

https://www.tii.ae/secure-systems)

isworkingtoapplyGenAItoitsworkextendingZeroTrustarchitectures(developedforinformationsecurity)toeveryaspectofinformationsecurityincyber-physicalsystems.

Thus,SSRCconsidershowGenAIcanhelpguaranteesecurity,resilience,andsafetyfordrones,swarms,swarmsofswarms,autonomousterrestrialandmarinevehicles,commandsystems,andhuman/droneinteractions—andparticularlyinareaswhereGenAIoutperformstraditionalAI/MLapproaches.

Examplesinclude:

?Individualapplications:healthmonitoring,stateestimation,predictivemaintenance,anomalydetection,self-healing,navigation,andemergencylandings.

?Fleetapplications:Swarmcoordination,swarmintelligence,collectivedecision-making.

?Human/Droneinteractions:communicationresilience,missionplanning,human-computerinteraction.

?Cybersecurityandresilience:Intrusiondetection,malwareclassification,threatsimulation.

ThispaperwillfocusondronesbecauseSSRCisdoingsomuchworkinthisarea.Whatwelearnfromdronescanbeappliedmuchmoretoautonomousandcyber-physicalsystemsingeneral,includingcars,robots,embeddedsystems,andsmartcities.Bythesametoken,

lessonslearnedintheseareascanbefoldedintoSSRC’sresearch.

approachallowsorganizationstomoveawayfromphysicaldevicemanagementapproachesthatrequireemployeestocarrymultiplephones.

1M.Xuetal.,“UnleashingthePowerofEdge-CloudGenerativeAIinMobileNetworks:ASurveyofAIGCServices.”arXiv,Oct.31,2023.

doi:10.48550/arXiv.2303.16129

Sidebar:GenAImodels

AsurveyofspecificgenerativeAImodelingtechniques,withtheirstrengthsandlimitationsasappliedtodronesafety,security,andresilience.

PopularexcitementovergenerativeAImodelshasbeendrivenbyhighlypublicizednewserviceslikeChatGPT,whichcreateauthoritative-soundingresponsestotextpromptsusingspeciallytrainedLLMs.

LargeLanguageModelsareAIsystemstrainedonvasttextdatasets.TheyuseDeepLearningtechniques,particularlyastructureknownasaTransformer,to“understand”andgeneratehuman-liketextbasedonthepatternsthey'velearned.LLMsanalyzetherelationshipsandcontextsinthetrainingdata.Theyuseavarietyoftechniquestobuildsimplifiedrepresentationsofthedata,allowingthemtomakeassociationsandcorrelationsbetweentheoriginaldataelements.Thesemodelsletthemcomposeresponsesthatcanmimichumanwritingstylesandcoverdiversetopics.VisualAIs,likeDALL-EandStableDiffusion,compilenewimagesfromtextandimageprompts.

LLMsarewidelyused,andwidelyuseful,increatingcontent,code,translations,summaries,syntheticdata,andtostructureunstructureddatafromtexts,documents,images,audio,andotherpromptdata.

Transformermodelsandtheservicesbuiltonthem—likeOpenAI’sChatGPT,Google’sGemini,andAnthropic’sClaude—haveattractedwidespreadattention,thankstotheirimpressiveabilitytocreatearticulate-seemingresponsestohumanprompts.These,andotherdomain-specificLLMsandSmallLanguageModels(SMLs),alsoshowpromiseforsupportinganalysis,research,anddevelopmenttoimprovedronesafety,securityandresilience.

ParallelingtheseveryvisibleAIdevelopments,however,hasbeenalmostadecadeofprogressonnewclassesofGenerativeAImodelscouldautomateandacceleraterepresentation-building.Whilegenerativeapplicationsattractthemostattentions,thesenewmodelsalsoaredrivingadvancesinanalyzingdataandinteractingwiththeworldaroundus.OthergenerativeAImodels—GenerativeAdversarialNetworks,VariationalAutoencoders,GenerativeDiffusionModels,andNormalizingFlowModels—thoughrelativelyunknown,canmakesubstantialcontributionstodronesecurity,safety,andresilience.

TransformerModels:Introducedin2017totranslatebetweenEnglishandFrenchtexts,TransformerModelsexcelatcapturinglong-rangedependenciesandcorrelationswithinunstructureddata

.2

Transformersleverageanovel“attentionmechanism”tolearntheconnectionsbetweenwordstohelpcreateembeddingsautomatically.Priortechniquesrequiredtranslatingrawtextintoavectorrepresentationusingaseparatemodel.Transformerscanbuildcomplexrepresentationsandlearnintricateconnectionsthroughtheirlayeredarchitecture,manner.,allowingresearcherstoprocesslargebodiesofunlabeledtextanddeveloplargelanguagemodelswithbillionsofparameters.Subsequentinnovationshavesupporteddocumentsummarization,composingquestion/answerassociationsacrosslargedatasets,codegeneration,in-depthanalysis,intrusiondetection,malwaredetection,andtranslatingcontrolsysteminstructionsacrossroboticarms.Theapproach’skeyadvantageisdistillingcontextfromcomplexdatasets.Challengesincludehallucination,longertrainingtime,slowerinference-building,heaviercomputationrequirements,andlargermodelsizescomparedtoothertechniques.

2A.Vaswanietal.,“AttentionIsAllYouNeed.”arXiv,Aug.01,2023.

doi:10.48550/arXiv.1706.03762.

GenerativeAdversarialNetworks(GANs):Theseweredevelopedin2014tocreaterealisticsyntheticnumbers,faces,andanimalimages

.3

GANspittwoneuralnetworksagainsteachother:oneisrewardedforgeneratingmorerealisticcontent,andthesecondisrewardedfordetectingfakecontent.Inthiscompetition,thegeneratorimprovesitsabilitytocreaterealisticoutputsthatcanfoolthediscriminator.GANsarewidelyusedincontentgeneration.Sincethefirstversionsweredesignedtoworkwithimages,researchersarenowfindingcreativewaystotranslatedata,suchascodeornetworklogs,intoimagessuitableforGANprocessing.GANsaregoodforrealisticsyntheticdatasetsthatcanbeusedtoimproveautonomoussystemsandcybersecurityalgorithms.They,too,however,sufferfromfailureslikemodecollapseorcatastrophicforgetting.

3I.J.Goodfellowetal.,“GenerativeAdversarialNetworks.”arXiv,Jun.10,2014.doi:10.48550/arXiv.1406.2661.

VariationalAutoencoder(VAE):VAEswereintroducedin2014toimproveinferencesdrawnfromacontinuouslyvaryingdatastream

.4

Thetechniquehelpsfindefficientwaystorepresentdataandcanbeusedtocompressdataordetectanomaliesandthreats.TrainingVAEsprocessinvolvesteachingasetofencodersanddecoderstotranslaterawdataintoanintermediatelatentspacewithadifferentprobabilitydistribution.VAEscanbeusedindependentlyinapplicationslikeanomalydetection,designingbetterencodingschemes,dataaugmentation,andimagegeneration.Inaddition,theyareoftenusedtopre-structuredataforotheralgorithms,includingGANs,toimprovetheirresults.

GenerativeDiffusionModel(GDF):GDFsemergedin2015toimprovelearning,sampling,inferences,andevaluationsthatwereinformedbynon-equilibriumthermodynamicsmodeling

.5

Thetechniqueaddsnoisetoasample(suchasanimage)andthenautomatesthedenoisingprocesstorevealthedata’sunderlyingstructure.Slightvariationscanleadtovalidnewtrainingdatasets.GDFsarewidelyusedinimagegenerationandcanimprovesignalclassificationinvariousdroneusecases.However,thetechniquerequireshighersamplingtimesanddemandsamorecomplexarchitecturethanGANsandVAEs.

NormalizingFlowModels(NFMs):Thesewereintroducedbyresearcherstomakecomplexdatasimplertoworkwith

.6

Thesemodelstakeeasy-to-understanddistributions,likeanormalbellcurve,andtransformthemstepbystep.Eachstepisreversible,meaningwecanalwaysgobacktothestartifneeded.Thisprocess,calleda“flow,”movesfromasimplebeginningtoanendthat

4D.P.KingmaandM.Welling,“Auto-EncodingVariationalBayes.”arXiv,Dec.10,2022.doi:10.48550/arXiv.1312.6114.

5Yang,Ling,etal."Diffusionmodels:Acomprehensivesurveyofmethodsandapplications."ACMComputingSurveys56.4(2023):1-39.

/doi/10.1145/3626235

6Kobyzev,Ivan,SimonJDPrince,andMarcusA.Brubaker."Normalizingflows:Anintroductionandreviewofcurrentmethods."IEEEtransactionsonpatternanalysisandmachineintelligence43.11(2020):3964-3979.

/abstract/document/9089305/authors

resemblesthecomplicatedtargetdataset.Bydoingthis,itispossibletostudyandusethedatamoreeffectively.NFMshavebeenusedtogeneratehandwrittennumbers,images,etc.Newerusecasesincludeenhancedclassificationandencodingschemes.Thetrainingprocesscreatesamodelthattransformstheprobabilitydistributionofadatasetintoamorecomplex,fullyreversibledistribution.NFMscan,however,requirehighercomputationandtrainingtimesthantechniqueslikeGANsandVAEs.

ThefollowingfiguresummarizesthemainGenAITechniquesandtheirapplicationsinthefieldofZeroTrustforautonomoussystems.

GenAIUseCases

Theproliferationofdrone-technologyhasbroughtchallengesthatspancrossbetweendomains—individual,fleet,humancontrol,andcybersecurity.Theirgrowthandcomplexitydemandconstantinnovationtoredoubletheirtrustworthinessandreliability.

Thefollowingapplications—whetherderivedfromUnmannedAerialVehicle(UAV)anddroneresearchorimportedfromotherdomains—haveimportantimplicationsforthefutureofUAVsandotherautonomoussystems.Note,too,thatmanyoftheseareearly-stageprojects,includedtogiveaflavorwhatGenAItoolsmightaccomplishastechniquesevolve.

GenAIshowstremendouspotentialforimprovingZeroTrustframeworkstoenhancesecurity,resilience,andsafetyinindividualautonomoussystems,suchasdrones,self-drivingcars,

robots,andembeddedsystems.Usecasesunderinvestigationincludeboostingself-

awareness,anomalydetection,autonomousdriving,predictivemaintenance,faultmanagement,self-healing,andlandingsafely.

Self-Awareness

Opportunity:Efficientlytranslatenoisy,blurry,andinconsistentdatatounderstandthedrone'scurrentstate—e.g.,compensatingformotionblurwhiletryingtodetectobstacles.

Thefoundationofdronehealthisaccuratelycapturingandmakingsenseofitscurrentstate—includingtheconditionofitscurrenthardware,itsapplications,itsphysicallocation,anditssecurityposture.Intherealworld,thiscangetmessy,asvideofeedssuffermotionblur,GPSdatajitters,inertialguidancedatalosecalibration,andnoiseorgapsdegradeinternalmonitoringdata.

Stateestimationiscrucialtoautonomousnavigationanddecision-making,andrawdatastreamsmustbeaccuratelycorrelatedwithposition,velocity,andorientation

.7

GenerativeAIcanhelpfillinmissingdataandfusedatafrommultiplesourcestoimprovestateestimation

.8

InnovationsinGenAIalgorithmslikeGANs,VAEs,andtraditionalMLalgorithmslikeLSTMcanfillinthesegaps,preservingvehiclesafetyviafaultdetection,predictivemaintenance,faultmanagementandsafe-landingprotocols.Forexample,innovativeGANapproachescanfillinmissingdataandmakeiteasiertofusedatastreamstocreateamoreaccuratestateassessment

,9

helpcorrelateinternallogdatawithacousticanalysis

,10

andidentifypotentialmechanicalissues

.11

Researchershavealsodevelopedtechniquesforgeneratingestimated-statevariablesusingConditionalGANs(CGANs)forindividualdronesanddroneswarms

.12

7T.D.Barfoot,Stateestimationforrobotics.CambridgeUniversityPress,2017.

8Liu,Guangyuan,NguyenVanHuynh,HongyangDu,DinhThaiHoang,DusitNiyato,KunZhu,JiawenKang,ZehuiXiong,AbbasJamalipour,andDongInKim.“GenerativeAIforUnmannedVehicleSwarms:Challenges,ApplicationsandOpportunities.”arXiv,February28,2024.

/10.48550/arXiv.2402.18062.

9Y.He,S.Chai,andZ.Xu,"Anovelapproachforstateestimationusinggenerativeadversarialnetwork,"in2019IEEEInternationalConferenceonSystems,ManandCybernetics(SMC),2019,pp.2248-2253.

/document/8914585

10Y.Wang,A.Vinogradov,“ImprovingtheperformanceofconvolutionalGANusinghistory-stateensembleforunsupervisedearlyfaultdetectionwithacousticemissionsignalsAppl.Sci.,13(5)(2023),p.3136,doi:10.3390/APP13053136

11S.Zheng,A.Farahat,andC.Gupta,“GenerativeAdversarialNetworksforFailurePrediction.”arXiv,Oct.04,2019.Accessed:Mar.15,2024.[Online].Available:

/abs/

1910.02034

12.A.He,C.Luo,X.Tian,andW.Zeng,"AtwofoldSiamesenetworkforreal-timeobjecttracking,"inProceedingsoftheIEEEconferenceoncomputervisionandpatternrecognition,2018,pp.4834-4843.

/document/8578606

Anomalydetection

Opportunity:Improveanalysisofdronesensordatatoidentifyabnormalconditions.

Moreaccurate,multi-dimensionalsystem-staterecordscanalsohelpidentifyanomaliesrelevanttodronehealth.Forexample,VAEscanimprovefaultdetectionandisolation.Theycanalsoidentifythewarningsignsofstressinvarioussystems,toprioritizepredictivemaintenanceschedules.Typically,machine-learningclassificationalgorithmsaretrainedonmultipleclasses(suchasdatatagged“faulty”and“notfaulty”).Dataonrarerclasses,suchas“faulty”data,isoftenscarceinpublicdatasetsandtherealworld.Inthesecases,GenerativeAdversarialNetworks(GANs)canbevaluableinsynthesizingtheserareclasses—makingup“faulty”datathatlooks

conditions.Inaddition,researchersareexploringhowLLMscouldhelpbettercontextualizetooperateinnewenvironments

.13

Forexample,DriveLLMcombinesLLMwithtraditionalautonomousnavigationalgorithmstosupportbetterreasoninganddecision-makingwhenrespondingtoedgecases

.14

Researchersfoundthemethodcouldimproveproactivedecision-makinginunexpectedcircumstances.Anotherapplication,TypeFly,enhancescommunicationbetweenhumansanddronesthroughanaturallanguageinterfac

e15.

Suchlargelanguagemodelsmay,however,manifestsurfacebias,inaccuracies,and

hallucinationissuesthatrequireadditionalsafeguards.Similarly,MicrosoftResearchdiscussestheiradvancementsinintegratingChatGPTwithroboticstomakerobotcontrolmoreintuitive

throughnaturallanguage.They'veenabledChatGPTtounderstandandexecutetasksin

physicalenvironments,whichfacilitateseasierhuman-robotinteractionwithouttheneedfor

complexprogrammingknowledge.TheChatGPTteamhasdevelopeddesignprinciplesfor

languagemodelstosolveroboticstasks(involvingspecialpromptingstructuresandhigh-levelAPIs),andtheyhavedemonstratedhowChatGPTcanhandletaskslikeoperatingdronesandrobotarmsthroughuser-friendlycommandsandfeedback.Thedevelopersemphasizethe

importanceofsafetyandsimulationtestingbeforereal-worldapplication

.16

Adaptability

Opportunity:Improvetranslationofautonomoussystemssoftwaretorunacrossdifferenthardwaremakes,models,andconfigurations.

Autonomoussystemcontrollersmustbetrainedforaspecificmodelandconfiguration.Thiscancreatechallengeswhenupgradingindividualcomponentsoradoptingnewmodels.RTXisarobotcontrolLLMthatcantranslatecontrolpoliciestomanagedifferentroboticarmswithoutrefactoringthecontrolalgorithmsforthelatesthardware.Insometests,leveragingtheexperienceofothercontrollers,producedcontrolpoliciestheoutperformedthebestcontrolscustom-builtforanindividualarm

.17

13Wang,Lei,etal."Asurveyonlargelanguagemodelbasedautonomousagents."FrontiersofComputerScience18.6(2024):1-26.

/article/10.1007/s11704-024-40231-1

14Y.Cuietal.,“DriveLLM:ChartingthePathTowardFullAutonomousDrivingWithLargeLanguageModels,”IEEETransactionsonIntelligentVehicles,vol.9,no.1,pp.1450–1464,Jan.2024,doi:10.1109/TIV.2023.3327715.

15Chen,Guojun,XiaojingYu,andLinZhong."TypeFly:FlyingDroneswithLargeLanguageModel."arXivpreprintarXiv:2312.14950(2023).

/pdf/2312.14950

16Vemprala,Sai,etal."Chatgptforrobotics:Designprinciplesandmodelabilities."arXivpreprintarXiv:2306.17582(2023).

/abs/2306.17582

17O.X.-E.Collaborationetal.,“OpenX-Embodiment:RoboticLearningDatasetsandRT-XModels.”arXiv,Dec.17,2023.doi:10.48550/arXiv.2310.08864.

EarlyLLMs,likeGPT3.5,weretrainedonlargebodiesoftextscrapedfromtheInternet.Thesemodelslackedreal-worldexperiencethatcouldreflecthowvariousconfigurationsofrobotsandotherautonomoussystemsmakeandexecutedecisions.Researchintoroboticaffordancesexploreshowtoconstraineachrobotmodeltoactionsthatarefeasibleandappropriatefortheircapabilities

.18

ThisprovidesaframeworkforguidingLLMdevelopmentbasedonmorecompleteknowledgeofanoperationorprocedure.Atthesametime,thegroundingfunctiontranslatesthishigh-levelknowledgeintoexecutionbyaparticularrobotmodelinaspecifictargetenvironment.

Predictivemaintenance

Opportunity:Predictthependingbreakdownofdronecomponentstooptimizemaintenance,repair,andpart-replacementschedules.

Properlyrecordedandanalyzed,thedrone’ssensorandoperationaldatarevealimpendingmechanicalproblemsbeforebreakdownsoccur.Predictivealgorithmsletmaintenanceandrepaircrewsestablishregularschedules,prioritizemaintenance,andstayaheadofpartsinventories.Withadvancenoticeandplanning,evenmajorrepairsandreplacementscanbeperformedduringroutineservice.Theprobabilitiesofcostlybreakdownsand,worse,catastrophicfailuresdropsharply.Partscanbereplacedjust-before-needed,withservicelifecalculatedasafunctionofinstalled-partquality,servicetime,andoperationalprofile—slashingthecostsofreplacingperfectlysoundpartsonafixedschedule.

TraditionalMLalgorithmsoftenlieattheheartofpredictivemaintenance.Forexample,metricslikeRemainingUsefulLife(RUL)andHealthIndicatorscanidentifymotoranomalies.ButsyntheticdatageneratedbyGANsandotherGenAIalgorithmscanimprovethealgorithms’performance.

MultipleMLtechniques,includingGenAIalgorithms,canbecombinedtoimprovefaultdiagnosisandpredictivemaintenanceworkflows

.19

Forexample,GANtechniqueshavebeenappliedtoacousticsignalsfrommachinerytoidentifyandpredictfaultsnotidentifiedbyothermethods

.20

GANshavealsobeenusedtogeneratesyntheticmonitoring-datasetstohelptrainotherMLalgorithmstoimprovefailure-predictionandoptimizemaintenanceschedules

.21

GAN-FP,geneticadversarialnetworksforfailureprediction,specializeingenerating,balancing,andlabelingtrainingdatatoimproveperformanceofotherMLalgorithm

s22.

Faultmanagement

Opportunity:Identifyfaults,makedynamicadjustments,andeffectasafelandingwhenrequired.

18M.Ahnetal.,“DoAsICan,NotAsISay:GroundingLanguageinRoboticAffordances.”arXiv,Aug.16,2022.Accessed:Mar.21,2024.[Online].Available:

/abs/2204.01691

19Z.Mianetal.,“Aliteraturereviewoffaultdiagnosisbasedonensemblelearning,”EngineeringApplicationsofArtificialIntelligence,vol.127,p.107357,Jan.2024,doi:10.1016/j.engappai.2023.107357.

20Y.Wang,A.VinogradovImprovingtheperformanceofconvolutionalGANusinghistory-stateensembleforunsupervisedearlyfaultdetectionwithacousticemissionsignalsAppl.Sci.,13(5)(2023),p.3136,10.3390/APP13053136

21Q.Fu,H.Wang,J.Zhao,andX.Yan,“AMaintenance-predictionMethodforAircraftEnginesusingGenerativeAdversarialNetworks,”in2019IEEE5thInternationalConferenceonComputerandCommunications(ICCC),Dec.2019,pp.225–229.doi:10.1109/ICCC47050.2019.9064184.

22S.Zheng,A.Farahat,andC.Gupta,“GenerativeAdversarialNetworksforFailurePrediction.”arXiv,Oct.04,2019.Accessed:Mar.15,2024.[Online].Available:

/abs/1910.02034

GenAImodelscantransformdataforotherMLsystemstoimprovefaultdetectioninautonomoussystems.Forexample,VAEscanhelpcompressoperationaldataintomoreefficientrepresentationsforlongshort-termmemorynetworks(LSTN),atypeofrecurrentneuralnetwork

.23

Spatio-temporaltransformernetworkscancapturetrendsanddimensionsacrossdifferenttimescalestoimprovebatteryfaultdiagnosisandfailureprognosis,enhancingpredictivemaintenanceforUAVs.Forexample,theBERTerysystemcanspotsubtlechanges(changesinvisibletoearlierMLtechniques)thatsignalimpendingbatteryfailureasmuchas24hoursbeforethebatteriesfail

.24

GANshavebeenusedtogeneratetrainingsamplesandbuildinferencenetworksforaircraft-enginemonitoringdatatoimprovefailurepredictionsofotherMLalgorithms

.25

ResearchershavecombinedVAEsandLSTMtosupportcontinuouslearningfromvehiclesensordata,generatingsyntheticdataforwiderrangesoffaultscenarios.BytrainingotherMLalgorithmsonthiskindofsyntheticdata,Sadhuetal.achieved90%accuracyindetectingfaultsand99%accuracyinclassifyingthem.

Demandsforcomputingpowerandrelativelyslowexecutionspeedaretopconcernswhenrunningthesekindsofalgorithmsonlow-costhardware.OnesolutionistoportthecomputationstoFPGAs,whicharemorepower-efficientthanGPUs.ThisishowSadhuetal.achieveda40xspeedup(athalfthepowerconsumption)fortheirVAE-LSTMfaultdetectionalgorithm

.26

VAEscanalsobeusedtotrainmodelsthatidentifynormaloperation.Usingthistechnique,Dhakletal.achieveda95.6%accuracyindetectingdeviationsindicativeoffaultsandanomaliesnotrepresentedinthetrainingdataset

.27

Whenaproblemarisesinadroneoritscommunicationsnetwork,thedronemustlandsafelytoavoidsecondarydamage.Tominimizethisrisk,MonteCarloalgorithmshavebeenusedtocalculate“targetlevelsofsafety”(levelsofacceptablerisk)forvariouslandingzones

.28

Techniqueslikethiscouldbecombinedwithtransformerstomakecontext-awaredecisionswhenafaultforcesaUAVsystemtoselectanappropriatelandingzone.

Inthefuture,itmayalsobepossibletouseGenAItechniquesliketransformerstoletsystemsself-healinresponsetohardwarefailures,softwarebugs,ornetworkdisruption.Forexample,Khlaisamniangetal.haveproposedaframeworkforusingGenAItodetectanomalies,generatecode,debugit,andcreatereportsoncomputersystems

.29

Althoughstillinitsearlystages,thiswo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論