2025年中考數(shù)學(xué)一輪復(fù)習(xí):二次函數(shù)的應(yīng)用(練習(xí))(解析版)_第1頁
2025年中考數(shù)學(xué)一輪復(fù)習(xí):二次函數(shù)的應(yīng)用(練習(xí))(解析版)_第2頁
2025年中考數(shù)學(xué)一輪復(fù)習(xí):二次函數(shù)的應(yīng)用(練習(xí))(解析版)_第3頁
2025年中考數(shù)學(xué)一輪復(fù)習(xí):二次函數(shù)的應(yīng)用(練習(xí))(解析版)_第4頁
2025年中考數(shù)學(xué)一輪復(fù)習(xí):二次函數(shù)的應(yīng)用(練習(xí))(解析版)_第5頁
已閱讀5頁,還剩35頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

考點13.二次函數(shù)的應(yīng)用(精練)

限時檢測1:最新各地模擬試題(50分鐘)

1.(2023?廣東深圳???寄M預(yù)測)某池塘的截面如圖所示,池底呈拋物線形,在圖中建立平面直角坐標

系,并標出相關(guān)數(shù)據(jù)(單位:m).有下列結(jié)論:

①AB=30m;②池底所在拋物線的解析式為y=**-5;③池塘最深處到水面CD的距離為1.8m;

④若池塘中水面的寬度減少為原來的一半,則最深處到水面的距離減少為原來的!.

其中結(jié)論正確的個數(shù)是()

A.4個B.3個C.2個D.1個

【答案】B

【分析】根據(jù)圖象可以判斷①;設(shè)出池底所在拋物線的解析式為,=62-5,再把(15,0)代入解析式求出

0即可判斷②;把x=12代入解析式求出y=-L8,再用5-1.8即可判斷③;把尤=6代入解析式即可判斷

④.

【詳解】解:①觀察圖形可知,AB=30m,故①正確;

②設(shè)池底所在拋物線的解析式為>=以2-5,

將(15,0)代入,可得故拋物線的解析式為y=5必一5;故②正確;

③.,.當(dāng)x=12時,y=-1.8,

故池塘最深處到水面C。的距離為5-L8=3.2(m),故③錯誤;

④當(dāng)池塘中水面的寬度減少為原來的一半,即水面寬度為12m時,

將x=6代入>=*尤2-5,得>=<2,可矢口此時最深處至IJ水面的距離為5-4.2=0.8(m),

即為原來的:,故④正確.故選:B.

【點睛】本題考查拋物線的實際應(yīng)用,體現(xiàn)了數(shù)學(xué)建模、數(shù)學(xué)抽象、數(shù)學(xué)運算素養(yǎng).

2.(2023?山西大同?校聯(lián)考模擬預(yù)測)生物學(xué)研究表明,在一定的溫度范圍內(nèi),酶的活性會隨溫度的升高

逐漸增強;在最適溫度時,酶的活性最強;超過一定溫度范圍,酶的活性又隨溫度的開高逐漸減弱,甚至

會失去活性?現(xiàn)已知某種酶的活性值y(單位:iu)與溫度x(單位:℃)的關(guān)系可以近似用二次函數(shù)

y=-g尤?+14x+142來表示,則當(dāng)溫度為最適宜溫度時,該種酶的活性值為IU.

【答案】240

【分析】化為頂點式求解即可.

【詳解】解:y=x2+14%+142=-1(x-14)2+240,

0-1<0,回拋物線開口向下,.?.當(dāng)x=14時,y的最大值為240,

故當(dāng)溫度為14。(2時,該種酶的活性值為240IU.故答案為:240.

【點睛】本題考查了二次函數(shù)圖象的應(yīng)用,熟練掌握二次函數(shù)>=。(》-/02+左的性質(zhì)是解答本題的關(guān)

鍵.對于二次函數(shù)y=a(x-〃y+1fc(°,h,左為常數(shù),awO),當(dāng)。>0時,拋物線開口向上,在對稱軸的左

側(cè)y隨x的增大而減小,在對稱軸的右側(cè)y隨x的增大而增大,此時函數(shù)有最小值;當(dāng)a<0時,拋物線開口

向下,在對稱軸的左側(cè)y隨x的增大而增大,在對稱軸的右側(cè)y隨x的增大而減小,此時函數(shù)有最大值.

3.(2023?廣東深圳???寄M預(yù)測)某公園內(nèi)人工湖上有一座拱橋(橫截面如圖所示),跨度A2為4

米.在距點A水平距離為d米的地點,拱橋距離水面的高度為人米.小紅根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對"和/7

之間的關(guān)系進行了探究.

下面是小紅的探究過程,請補充完整:

⑴經(jīng)過測量,得出了d和6的幾組對應(yīng)值,如下表.

d/米00.611.82.433.64

4米0.881.902.382.862.802.381.600.88

在d和/7這兩個變量中,是自變量,是這個變量的函數(shù);

⑵在下面的平面直角坐標系x0y中,畫出(1)中所確定的函數(shù)的圖象;

⑶結(jié)合表格數(shù)據(jù)和函數(shù)圖象,解決問題:①求該函數(shù)的解析式:②公園欲開設(shè)游船項目,現(xiàn)有長為3.5

米,寬為1.5米,露出水面高度為2米的游船.為安全起見,公園要在水面上的C,。兩處設(shè)置警戒線,

并且CE=D/,要求游船能從C,O兩點之間安全通過,則C處距橋墩的距離CE至少為多少米?

(A/2?1.4B精確到01米)

fy

i-T…1-T—'T

~O-12345%

【答案】(l)d,九⑵見解析⑶①〃=-0.5相+24+0.88;②C處距橋墩的距離CE至少為0.7米

【分析】根據(jù)函數(shù)的定義進行判斷作答即可(2)①待定系數(shù)法求解析式即可;②令%=2,代入求解即

可.

【詳解】([)解:由題意知,在d和〃這兩個變量中,d是自變量,場是這個變量的函數(shù)

故答案為:d,h-

(2)解:描點,連線,作圖如下;

O12345X

(3)①解:設(shè)二次函數(shù)的解析式為/1=0/+即+0.88,

把(/1238、),(/3238)、代入得:f2.38用=1+636++0.。8.88'解得“]々=b-=02.5'

回二次函數(shù)的解析式為介=一0.5屋+2/+0.88;

②解:令h=2,得:一0.5屋+2d+0.88=2,^^d=2±JlJ5

4。0.7或d=3.3,回則C處距橋墩的距離CE至少為0.7米.

【點睛】本題考查了函數(shù)的定義,二次函數(shù)解析式,二次函數(shù)的圖象,二次函數(shù)的應(yīng)用.解題的關(guān)鍵在于

正確的求二次函數(shù)解析式.

4.(2023?山東臨沂?統(tǒng)考一模)如圖,灌溉車為綠化帶澆水,噴水口H離地豎直高度為1.5m.可以把

灌溉車噴出水的上、下邊緣抽象為平面直角坐標系中兩條拋物線的部分圖象;把綠化帶橫截面抽象為矩形

DEFG,其水平寬度DE=3m,豎直高度EF=0.5m.下邊緣拋物線是由上邊緣拋物線向左平移得到,上

邊拋物線最高點A離噴水口的水平距離為2m、高出噴水口0.5m,灌溉車到綠化帶的距離。。為d(單

位:m)

⑴求上邊緣拋物線的函數(shù)解析式,并求噴出水的最大射程OC;⑵求下邊緣拋物線與x軸的正半軸交點8

的坐標;⑶要使灌溉車行駛時噴出的水能澆灌到整個綠化帶,直接寫出d的取值范圍

1L

【答案】⑴)==(尤-22?+2,OC=6米(2)(2,0)(3)24^426一1

O

【分析】(1)由頂點42,2)得,設(shè)y=°(x-2)2+2,再根據(jù)拋物線過點QL5),可得。的值,從而解決問

題;(2)過點//作碗〃彳軸,交上邊緣拋物線于點當(dāng)y=L5時,貝卜g(尤-2)2+2=1.5

O

解得:%=4,x2=0,則M(4,L5),則下邊緣拋物線是由上邊緣拋物線向左平移4m得到的,可得點8的

坐標;(3)根據(jù)歷=0.5,求出點尸的坐標,利用增減性可得d的最大值為最小值,從而得出答案.

【詳解】(1)解:由題意得42,2)是上邊緣拋物線的頂點,設(shè),=。。-2)2+2,

11

又???拋物線過點(0,L5),??.L5=4a+2,.?.〃=-7,,上邊緣拋物線的函數(shù)解析式為丁=-三(%-2尸9+2;

OO

1

令)=0,則_《(兀一2)29+2=0解得:玉=6,%=_2團0C=6米.

O

(2)解:如圖,過點//作軸,交上邊緣拋物線于點

則-:(X-2)2+2=1.5解得:%=4,x2=0,則/(4,1.5),

O

團下邊緣拋物線是由上邊緣拋物線向左平移得到

???下邊緣拋物線是由上邊緣拋物線向左平移4m得到的,回點3是點C向左平移4m得到,

由(1)知。C=6米,團03=6—4=2(米).?.點B的坐標為(2,0);

(3)解:-.-EF=0.5,.?.點F的縱坐標為0.5,.?.0.5=-1(^-2)2+2,解得x=2±2百,

vx>0,x=2+2y/3,當(dāng)x>2時,y隨X的增大而減小,

...當(dāng)2VxV6時,要使y20.5,則尤42+2石,

???當(dāng)04x42時,y隨x的增大而增大,且無=0時,>=1.5>。.5,

.?.當(dāng)0Wx46時,要使y20.5,則04尤42+26,

?;DE=3,灌溉車行駛時噴出的水能澆灌到整個綠化帶,."的最大值為2+2百-3=26-1,

再看下邊緣拋物線,噴出的水能澆灌到綠化帶底部的條件是&NO5,.?"的最小值為2,

綜上所述,d的取值范圍是2VdV26-L

【點睛】本題是二次函數(shù)實際應(yīng)用,主要考查了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的圖象性質(zhì),二

次函數(shù)的圖象的平移,二次函數(shù)與方程的關(guān)系等知識,讀懂題意,建立二次函數(shù)模型是解題關(guān)鍵.

5.(2023?浙江溫州?校聯(lián)考三模)根據(jù)以下素材,探索完成任務(wù).

如何設(shè)置"綠波帶”?

素材1:某市為新路段設(shè)置"綠波帶”,車輛駛?cè)刖G波帶后,若以一定速度行駛,到達下個路口時會遇到綠

燈,可節(jié)約能源.如圖,A,5兩路口停車線之間距離為900米,兩個交通信號燈的綠燈持續(xù)時間均為。

秒,A處綠燈亮起53秒后8處綠燈第一次亮起.

素材2:第1輛車的車頭與停車線平齊,后面相鄰兩車的車頭相距5米,綠燈亮起時第一輛車立即啟動,

后面每一輛車在前一輛車啟動2秒后再啟動.車輛啟動后,先加速,到一定速度后勻速行駛.在加速階

段,汽車的速度3)與時間⑺的關(guān)系如下表所示,行駛路程H)與速度、時間的關(guān)系滿足§=^.

t(秒)01234

V(米/秒)036912

素材3:A路口車流量顯示:綠燈持續(xù)時間。應(yīng)少于25秒(。為整數(shù)),每一次綠燈一個車道內(nèi)能通過的

等候車輛數(shù)為1。輛(車頭超過停車線即為通過),且每輛車加速通過A路口.

任務(wù)L用含1的代數(shù)式表示丫,并求$關(guān)于,的函數(shù)表達式:

任務(wù)2:求第10輛車從啟動到車頭到達停車線1的時間以及綠燈持續(xù)時間。的值.

任務(wù)3:A路口綠燈亮起后,第一輛車的勻速車速處于什么范圍時,可在8路口綠燈第一次亮起期間通過

停車線2?

3—

【答案】任務(wù)1:v=3t,s=5/;任務(wù)2:第10輛車從啟動到車頭到達停車線1的時間為聞秒,綠燈持

續(xù)時間。的值為24;任務(wù)3:當(dāng)12<vV18米/秒時,可在8路口綠燈第一次亮起期間通過停車線2

【分析】任務(wù)1:根據(jù)題意可知v=3f,代入s=3進行計算即可:

任務(wù)2:s=T產(chǎn)=5x9,求出t的值,再計算總時間即可;

任務(wù)3:設(shè)加速階段時用為/秒,則勻速階段速度為允米/秒,令l產(chǎn)+3/(53—)=900,以及

3產(chǎn)+3/(77-。=900,分別求解即可求出.

【詳解】任務(wù)L解:由表格可知,v=3t,團s=3=g產(chǎn).

任務(wù)2:解:5=5廠=5x9,回加速時間f=5/§^秒(?>0),

回。為整數(shù),病<6,團總時間為6+9x2=24秒<25秒,回。=24,

團第10輛車從啟動到車頭到達停車線1的時間為病秒,綠燈持續(xù)時間。的值為24.

任務(wù)3:解:由題意,第一輛車啟動至到達B綠燈所需時間f滿足534"77秒

設(shè)加速階段用時為f秒,則勻速階段速度為小米/秒

3

令萬產(chǎn)+3r(53_f)=900,解得:t,=100(舍去),12=6,

團勻速階段速度為3t=18米/秒令,2+3乂77-)=900,

解得:4=150(舍去),4團勻速階段速度為3r=12米/秒

國當(dāng)12<vV18米/秒時,可在B路口綠燈第一次亮起期間通過停車線2.

【點睛】本題考查了二次函數(shù)的應(yīng)用,一元二次方程的求解,根據(jù)題意列出方程是解題的關(guān)鍵.

6.(2023?河南周口?校聯(lián)考二模)放風(fēng)箏是人們喜愛的戶外運動,我國很多城市有風(fēng)箏節(jié).濰坊風(fēng)箏節(jié)上

放飛中國空間站并實現(xiàn)神舟號與空間站的對接讓渺渺震撼不已,并打算仿制一個水母風(fēng)箏.如圖所示,水

母的頭部是一個近似的拋物線,渺渺以白紙的左下角為原點。建立了一個直角坐標系并在其中繪制了連

續(xù)的幾個水母頭部.若最左側(cè)的拋物線可以用、=內(nèi)2+/(4x0)表示.拋物線上8、C兩點到紙的最底端

313

距離均為W機,到紙的左側(cè)0A的距離分別為5犯5根.

⑴求第一個拋物線的函數(shù)關(guān)系式并求出圖案最高點到紙的最底端距離;

⑵如果這張紙長為10m,渺渺最多可以連續(xù)繪制幾個水母頭部的圖案?

【答案】(1)第一個拋物線的函數(shù)關(guān)系式為y=-f+2x,圖案最高點到紙的最底端距離為1m

(2)渺渺最多可以連續(xù)繪制5個水母頭部的圖案

【分析】(1)根據(jù)題意求得8(J,I),C(|,|),解方程組求得拋物線的函數(shù)關(guān)系式為

y=—*+2x;根據(jù)拋物線的頂點坐標公式得到結(jié)果;

(2)令y=。,即-尤?+2x=0,解方程得到占=o,X2=2,即可得到結(jié)論.

【詳解】(1)根據(jù)題意得:B(),[),C(1,[),把8,c代入>=依2+法

2424

44?

得393J解得:.?比物線的函數(shù)關(guān)系式為「42盯

—=—a+—b

〔442

-22

,圖案最高點到地面的距離=7K=1m;

4x(-1)

(2)令y=。,HP—x2+2x=0,.,.匕=。,&=2,r.10+2=5,

最多可以連續(xù)繪制5個水母頭部的圖案.

【點睛】本題考查了二次函數(shù)的應(yīng)用,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.

7.(2023?安徽?統(tǒng)考模擬預(yù)測)行駛中的汽車,在剎車后由于慣性,還要繼續(xù)向前滑行一段距離才能停

止,這段距離稱為"剎車距離為了了解制造車間某型號汽車的剎車性能,工程師進行了大量模擬測試,

得出汽車A剎車后剎車距離y(單位:〃z)與剎車時的速度x(單位:m/s)滿足二次函數(shù)

y^0.08x2+bx+c.測得部分數(shù)據(jù)如下表:

剎車時車速(m/s)0510152025

剎車距離(m)06.51731.55072.5

⑴求剎車距離關(guān)于剎車時的速度的函數(shù)表達式(不必寫自變量的取值范圍);

⑵有一輛該型號汽車A在公路上(限速100km/h)發(fā)生了交通事故,現(xiàn)場測得剎車距離為99m,請問司機

是否因為超速行駛導(dǎo)致了交通事故?請說明理由;⑶制造車間生產(chǎn)另一型號汽車2,其剎車距離y(單

位:利)與剎車速度x(單位:m/s)滿足:y=0.12x2+/3x,若剎車時車速滿足在10WxW20范圍內(nèi)某一

數(shù)值,兩種型號汽車的剎車距離相等,求0的取值范圍.

【答案】⑴V=008/+0.9X⑵該司機是因為超速行駛導(dǎo)致了交通事故,理由見解析⑶身處;

【分析】(1)把(0,。),(5,6.5)代入丁=0.08/+如+??傻脛x車距離關(guān)于剎車時的速度的函數(shù)表達式為

y=0.08x2+0.9x;(2)結(jié)合(1)令y=99得:彳=3?;蜥?-?(舍去),根據(jù)

30m/s=108knVh>100knVh,即可得到答案;⑶由題意得;?!?><2。2+2?!?。+0.9x2?!山?/p>

得答案.

c=06=0.9

【詳解】(1)把(0,0),(5,6.5)代入y=0.08Y+a+c得:2+5b+c=6.5,解得

c=0

國剎車距離關(guān)于剎車時的速度的函數(shù)表達式為y=0.08/+0.9x;

(2)該司機是因為超速行駛導(dǎo)致了交通事故,理由如下:

在、=。.08丁+0.9工中,令y=99得:99=0.08x2+0.9%,解得:x=30或彳=-乎(舍去),

03Om/s=lO8knVh>lOOknVh,回該司機是因為超速行駛導(dǎo)致了交通事故;

(3)00.12>0.08,汽車2剎車距離的函數(shù)圖象更靠近y軸,

由題意得4小1。:+1。公0-。8*1。7。.9><1。

[0.12x202+20/7>0.08x202+0.9x20解得:小4

【點睛】本題考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是讀懂題意,用待定系數(shù)法求出函數(shù)解析式.

8.(2023?河南洛陽?校聯(lián)考一模)如圖,是某水上樂園為親子游樂區(qū)新設(shè)滑梯的示意圖,其中線段上4是豎

直高度為6米的平臺,滑道分為兩部分,其中段是雙曲線y=U,BCD段是拋物線的一部分,兩滑道

的連接點B為拋物線的頂點,8點的豎直高度為2米,滑道與水平面的交點。距尸O的水平距離為8米,

以點O為坐標原點建立平面直角坐標系,距直線尸。的水平距離為x.

⑴請求出滑道38段y與x之間的函數(shù)關(guān)系式;(2)當(dāng)滑行者滑到C點時,距地面的距離為1米,求滑行

者此時距滑道起點A的水平距離;⑶在建模實驗中發(fā)現(xiàn),為保證滑行者的安全,滑道BCD落地點。與最

OP1

高點B連線與水平面夾角應(yīng)不大于45。,—求OD長度的取值范圍.

19

【答案】(1)滑道段y與尤之間函數(shù)關(guān)系式為y=-5(尤一6)一+2

(2)滑行者距滑道起點的水平距離為(4+忘)米⑶8<OD<12

【分析】(1)由2在雙曲線>=?上,且根據(jù)題意為=2,得到3(6,2),由2為拋物線BCD的最高點,

可設(shè)拋物線3CQ的解析式為y=a(x-6y+2,滑道與水平面的交點。距P。的水平距離為8米,得到點D

的坐標為(8,0),把(8,0)代入y=a(x-6y+2得,0=a(8-6)2+2,解得a=-;,即可得到拋物線的解析

式;(2)依據(jù)前面的解析式求出A、C的橫坐標,它們的差距即為所經(jīng)過的水平距離;

(3)先判斷。。的最小值,再根據(jù)已知求出0。最大值即可.

1?

【詳解】(1)解:3在雙曲線y上,且根據(jù)題意為=2,團3(6,2),

為拋物線BCD的最高點,則設(shè)拋物線BCD的解析式為y=a(x-6)2+2,

回滑道與水平面的交點。距尸。的水平距離為8米,回點D的坐標為(8,0),

把(8,0)代入y=o(x-6『+2得,0=4/(8-6)2+2,解得a=-;,

19

回滑道段y與x之間函數(shù)關(guān)系式為y=-Q(x-6)-+2;

(2)令上式,=1時,則l=-:(x-6『+2,解得x,=6+0,x,=6-V2(不合題意,舍去),

團C(6+后,1),將》=6代入y=,中得x=2,E1A(2,6),

06+A/2-2=4+A/2,此時滑行者距滑道起點的水平距離為(4+應(yīng))米;

⑶解:根據(jù)上面所得3(6,2),當(dāng)。(8,0)時,ZBED=9Q°,BE=DE=2,止匕時々">=45。,

則D點不可往左,可往右,的最小值為8,

OP1

X0—>-,0(9D<2OP=12,08<OZ)<12.回0。長度的取值范圍為84ODV12.

【點睛】本題主要考查了二次函數(shù)和反比例函數(shù)的實際應(yīng)用,用到了待定系數(shù)法求二次函數(shù)解析式、求函

數(shù)圖象上點的坐標等知識,數(shù)形結(jié)合是解題的關(guān)鍵.

9.(2023?安徽滁州???级#┍本┒瑠W會的召開激起了人們對冰雪運動的極大熱情,如圖是某小型跳臺

滑雪訓(xùn)練場的橫截面示意圖,取某一位置的水平線為x軸,過跳臺終點A做水平線的垂線為y軸,建立平

面直角坐標系,圖中的拋物線6:>=-卷/+4彳+1近似表示滑雪場地上的一座小山坡,某滑雪愛好者小劉

從點。正上方A點滑出,滑出后沿一段拋物線C?:y=-:V+6x+c運動.

O

⑴小山坡最高處的高度是—米;⑵小劉在某次訓(xùn)練中,滑到離A處的水平距離為6米時,達到滑行的

最大高度了米(相對于水平線),在這次訓(xùn)練中,當(dāng)小劉滑出后離A的水平距離為多少米時,他滑行高度

與小山坡的豎直距離為工米?⑶小劉若想滑行到最大高度時恰好在坡頂正上方,且與坡頂距離不低于3

米,求跳臺滑出點的最小高度.

【答案】(1)7(2)運動員與小山坡的豎直距離為'米⑶跳臺滑出點的最小高度為2米

145

【分析】(1)由>=-五/+耳升|的頂點為(8,7),即可解得答案.(2)設(shè)運動員運動的水平距離為機米

時,運動員與小山坡的豎直距離為1米,依題意列出方程,解出加即可;(3)先求出6,再根據(jù)與坡頂距

離不低于3米列出關(guān)于。的不等式,即可解得答案.

【詳解】(1)y=-'/+;欠+[=-卷(N-16x)+g=-4(刀-8)2+4*64+|=-4(x-8)2+7故答案為:7;

17

(2)V小劉滑到離A處的水平距離為6米時,其滑行高度最大為[米,

b

???丁=-7工2+云+。的頂點為(6,,),c=4,2x(八-6,解得。=彳,

82,(一?2

設(shè)運動員運動的水平距離為加米時,運動員與小山坡的豎直距離為二米,

24

依題意得:+-|m+4)-(--i-m2+^m+!)=^i,

OZ1Z33Z4

整理得:(根+5)(〃-8)=0,解得:叫=8,m2=-5(舍去),

■.運動員運動的水平距離為9米時,運動員與小山坡的豎直距離為三米;

24

I451

(3)拋物線£:,=一丘/+耳%+§=_/(1_8)2+7,

?________=9Q1o

2

當(dāng)x=9時,運動員到達坡頂,“2x(=.-.C2-.y=--x+-x+c,

與坡頂距離不低于3米,解得:C22..?.跳臺滑出點的最小高度為2米.

【點睛】本題考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是讀懂題意,熟練掌握二次函數(shù)的基本性質(zhì),并能將實際

問題與二次函數(shù)模型相結(jié)合.

10.(2023?江蘇泰州???级#┤鐖D,已知拋物線y=&+"+c與x軸分別交于A(-l,0)、3(3,0)兩

點,與y軸交于點c,且O3=oc.⑴求拋物線的函數(shù)表達式:⑵如圖1,點。是拋物線頂點,點

是在第二象限拋物線上的一點,分別連接3D、BC、BP,若NCBD=NABP,求加的值;⑶如

圖2,若N54C的角平分線交>軸于點G,過點G的直線分別交射線43、AC于點E、F(不與點A重

圖1圖2

【答案】⑴y=/-2x-3;⑵一:;⑶不變,J。;臚.

【分析】(1)利用待定系數(shù)法求解二次函數(shù)的解析式即可;(2)如圖,過尸作PKJLM于K,連接C。,

先求頂點。。,一4),證明/BCD=90。,tan/D2C=g=:,則tan/CB。=tanZABP=:,再列方程求解

BCJ3

即可;(3)過G作MG||x軸交AC于M,過尸作FT〃彳軸交AG于T,過C作CQ〃x軸交4G于。,證

明△CQ4SACGM,AACQSAAMG,可得上+工=與,同理可得:工+上=與,從而可得答

OAACGMAEAFGM

案.

【詳解】(])解::拋物線y=?^+bx+c與X、y軸分別交于A(TO)、3(3。)兩點

,設(shè)拋物線為:j=a(x+l)(a-3),-.-OB=OC=3,;.C(0,—3),

把點C(0,-3)代入y=a(x+l)(a-3),..3a=-3,解得q=l

所以拋物線解析式為y=a(x+l)(x-3)=d—2x—3;

*.*y=x2—2x—3=(x—I)2—4,頂點"D(L—4),

.\CD2=(l-0)2+(-4+3)2=2,5c2=32+32=18,BD2=(3-l)2+(0+4)2=20,

CD1

:.CD2+BC2=BD2,CD=6,BC=36,-^BCD=90°tanZDBC=-=-,

nC5

?.?ZCBD=ZABP/.tanZCBD=tanZABP=-

3

m2-2m-31

P(m,ri),m<0,n>0BK=3-m,PK=n=rri1—2m—3

3-m3

444

..?加=-g,經(jīng)檢驗加=-§是方程的解且符合題意;即加的值為-

(3)解:不變,求解過程如下:

過G作MG||x軸交AC于M,過/作FT〃x軸交AG于T,過。作。。〃工軸,如圖:

團MG||x軸,F(xiàn)T〃x軸,CQ〃x軸,:.MG//FT//CQ//OAf

GM_CMGM_AM

回△^ACQ^^AMG,

COA^&CGM,~AO~^C'~CQ~^C

_G_M_?_G__M=_C_M_?_A_M_=]1,--I-1--I-=--I-

OACQACAC9'AOCQGM

?.?AG平分NB4C,ZCAG=ZBAG=ZAQC,/.AC=CQ,

---1---=---,同理可得:----1---=---

AOACGMjAEAFGM

由(1)可知:A(-I,O),c(o,-3),...OA=I,

11111,Vio10+Vio,11在占法10+質(zhì)丁

—+——=——=—+——=i+--=——-—,——--不變71V?

AEAFGMAOAC1010AEAF10

【點睛】本題考查了利用待定系數(shù)法求解二次函數(shù)的解析式,銳角三角函數(shù)的應(yīng)用,勾股定理及其逆定理

的應(yīng)用,相似三角形的判定與性質(zhì),正確作出輔助線是解題的關(guān)鍵.

11.(2023?福建寧德?統(tǒng)考一模)如圖1,拋物線y=與直線丫=根(加是常數(shù))交于A,B兩點(點

A在點8的左邊),且AOR是直角三角形.⑴求機的值;⑵如圖2,將拋物線y=:/向下平移,得到

拋物線y=Jx2-左,若拋物線>=</-左與直線y=m交于c,。兩點(點C在點。的左邊),與無軸正半軸

44

交于點E.求證:ACDE是直角三角形;(3)如圖3,若拋物線y=a(x-〃y-4(a>0)與直線y=5交于

M,N兩點(點M在點N的左邊),點K在拋物線y=o(x-%)2-4上,當(dāng)△MVK是直角三角形時,直接寫

出點K的坐標.(用含。,力的代數(shù)式表示)

aaaa

【分析】(1)設(shè)AB與y軸的交點為P.可得AOAB是等腰直角三角形,進而可得點8的坐標為(皿〃?).將

其代入y=J/即可求解;(2)分別過點C,。作軸于點H,OQ,X軸于點Q.可通過證

VC8ESVE0D求證,也可通過勾股定理的逆定理求證;(3)設(shè)平移后得到.過點K'作

x軸的平行線B分別過點AT,N作MZ,。于點3NTL%于點、「證Rt&WZKsRt^KTM即可求解.

【詳解】([)解:如圖1,設(shè)AB與y軸的交點為P.

團丫=機平行于x軸,y=的圖象關(guān)于y軸對稱,SOP1AB,OA^OB.

回AQW是等腰直角三角形.團NABO=NB49=45。.^\OP=PB.回點B的坐標為(加,機).

團點3(帆,帆)在拋物線y二上,回加=[加2.團羽。0,回根=4.

44

(2)證明:如圖2,分別過點C,。作CH,無軸于點“,QQLx軸于點Q.

_.y=^-x2-k,[%=2〃+4,[%=-2〃+4,

2

聯(lián)立/4解得]44

y=4.〔%=4.[%=4.

團點C的坐標為卜24Tz,4),點D的坐標為(2^/^^,4)

將)=0代入y=;%2—左,解得石=2jl,巧=—2荻(舍去).

團點E的坐標為(2j^,0)團EQ=2A/^+4—2y/k,QD=4,EH=2y/k+2〃+4,CH=4.

CHEH

證法一:團—2女)(2a+27TT7)=4a+4)—4左=16,^\EQEH=QDCH.0—=—.

£QQD

團ACHE=NEQD=90°,回VCJffi^VEQD.回ACEH=ZEDQ.

^ZDEQ+ZEDQ=90°.^ZDEQ+ZCEH=90°.0ZDEC=90°.回ACDE是直角三角形.

證法二:在Rt^CHE中,根據(jù)勾股定理,得EC。=C尸+HE。=42+(2次+=32+8后+8也(4+后).

同理可得即2=32+8)-8)左(4+公.SEC2+ED2=64+i6k.

(HCD2=[2-Jk+4-(-27TF4)]2=64+16fc13EC2+ED2=CD2.EIACDE是直角三角形.

(3)解:點K的坐標為①+叵三,5」),或①-叵三,5」).

aaaa

將拋物線y=a(x-li)2-4向左平移h個單位得到拋物線y=ax2-4.設(shè)AMNK平移后得到△加'<,

如圖3.過點K作x軸的平行線耳分別過點M',N作于點3NT上%于點、T.

W

城一心

3y

聯(lián)立a

Ji=5;

回點M'的坐標為(-區(qū),5),點V的坐標為(2①,5).

設(shè)K'的坐標為(加,am2-4),MrL=t.回,=5-(。/-4)=9一劭?.

易證RtAMZKsRtATTTV,.RLK?KT=NT-MI.

222

gpf=+m)(^^-m)=--m=—(9-am),^\t=-t,

aaaaa

團,wO,Bt=—.回點K'的縱坐標為5-工,即點K的縱坐標為5-工.

aaa

解方程“(x-/7)2-4=5—工,得x=〃±^El.團點K的坐標為(4+或(無一

aaaaaa

【點睛】本題考查了二次函數(shù)的綜合運用.需要學(xué)生熟練掌握二次函數(shù)的各項性質(zhì).

2,

12.(2023?遼寧葫蘆島?統(tǒng)考一模)如圖,拋物線>廠+灰+。與x軸交于點A和點2(3,0),與y軸交于

點C(0,2),點。是拋物線上一動點.(1)求拋物線的解析式;(2)如圖1,當(dāng)點。在直線8C上方時,作

小,x軸于點E交直線BC于點E,當(dāng)=時,求點。的坐標;⑶點P在拋物線的對稱軸/

上,點。是平面直角坐標系內(nèi)一點,當(dāng)四邊形為正方形時,請直接寫出點。的坐標.

。3(1,-2),<2,(6.5,-2)

【分析】(1)將2,C兩點坐標代入拋物線解析式,利用待定系數(shù)法求解即可;

(2)根據(jù)題意可求出直線BC的解析式,由=可證明CD=CE,作CHLDE于則

DH=HE,設(shè)點。的橫坐標為f,分別表達?!焙虷E,建立方程即可得出結(jié)論;

(3)若四邊形BPR2為正方形,則△BPD是等腰直角三角形,且ZBPD=90。,根據(jù)題意畫出對應(yīng)圖形,利

用全等三角形建立方程,即可得出結(jié)論.

2

【詳解】(I).?.y=—灰+c經(jīng)過點5(3,0),點c(o,2)

2~二3二拋物線的函數(shù)解析式為:y=

一二x9+3b+c=024

3解得----X2H—x+2

33

c=2c=2

(2)???。b_Lx軸,二。b〃y軸,,\ZDEC=ZBCO,-.-ZD=ZBCO,:.ZD=ZDECf:.CD=CE,

設(shè)直線BC的解析式為y=kx+m,將3(3,0),C(0,2)代入得其解析式得,

3k+m=0k=--]+2

,解得,3,回直線3C的解析式為y=-

m=2

772=2

作CH_Lr)E于",如圖,則。7=

設(shè)點0的橫坐標為心則—+g%+2],H(t,2),+2j

:.DH=[--t2+L+21—2=—2/+±HE=2-(--t+2]=-t

I.33)33I.3J3

242(8、

產(chǎn)+y=不解得4=0t2=l:.Dh,-\

24?,8

(3)回>=一耳/+3彳+2=_§(無一iy+耳,回拋物線的對稱軸為x=l,

若四邊形BP。。為正方形,則△BPD是等腰直角三角形,且ZBPQ=9O。,

設(shè)點D的橫坐標為小則毛,-,+?!?2),

如圖2,過點。作于點設(shè)直線/與x軸交于點N,

則Nr>Aff>=N37VP=N3P£)=90。,PD=BP,N(l,0),0ZDPM+ZMDP=ZBPN+ZDPM,

04MDP=4BPN,MPDM玨BPN(A^),BDM=PN=n-l,BN=PM=2,

243

^\MN=n+\,0n+l=--n2+—n+2,角星得〃=一1或〃=5,

33乙

當(dāng),=—1時,點。與點A重合,如圖3,尸(1,2),則。。,一2)或尸(1,一2),則。(1,2);

當(dāng)〃時心則Q(352);

如圖4,過點。作于點M,設(shè)直線/與無軸交于點N,

同理可證,L.PDM^AfiPMAAS),^\DM=PN=n-l,BN=PM=2,

<2,4>9

0W=zz+l,0?+l=-|--?~+-?+2I,解得〃=_]或〃=],

當(dāng)〃=T時,點。與點A重合,同上;當(dāng)w=|時,一£|,則0(65-2);

綜上,點。的坐標為:。(352)或&(1,2)或03(1,-2)或Q(6.5,-2)

【點睛】本題屬于二次函數(shù)綜合題,涉及待定系數(shù)法,等腰三角形的性質(zhì)與判定,正方形的性質(zhì)與判定等

相關(guān)知識,解題關(guān)鍵是利用轉(zhuǎn)化思想對已知信息進行轉(zhuǎn)化,將=轉(zhuǎn)化為CD=CE,將正方形的

存在性轉(zhuǎn)化為等腰直角三角形的存在性.

13.(2023,廣東茂名?統(tǒng)考二模)如圖,在直角坐標系中有一直角三角形AO3,。為坐標原點,04=1,

tanZBAO=3,將此三角形繞原點0逆時針旋轉(zhuǎn)90。,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點A、

8、C.⑴求拋物線的解析式;⑵若點P是第二象限內(nèi)拋物線上的動點,其橫坐標為3

①是否存在一點尸,使APCD的面積最大?若存在,求出APCD的面積的最大值;若不存在,請說明理

由.②設(shè)拋物線對稱軸/與x軸交于一點E,連接尸E,交CD于F,直接寫出當(dāng)△CE尸與△CO。相似

時,點尸的坐標.

【答案】⑴y=f2-2x+3⑵①存在,最大值為N,理由見解析;②尸(—1,4)或(—2,3)

【分析】(1)根據(jù)正切函數(shù),可得03=3,根據(jù)旋轉(zhuǎn)的性質(zhì)可得OC=03=3,據(jù)此求出A、B、C的坐

標,再利用待定系數(shù)法即可求出函數(shù)解析式;

(2)①可求得直線。的解析式,過尸作軸于點N,交。于點可用/表示出的長,當(dāng)

尸河取最大值時,貝gPCD的面積最大,可求得其最大值;②當(dāng)NCFE=90。時,^CFE^COD,過點尸

FMFFOD1

作尸河Lx軸于〃點,證明AEFCSAHWP,得到=進而推出MP=3ME,貝ij

MPCFCO3

-r2-2r+3=3(-l-r),解方程即可;當(dāng)NCEF=90。時,ACEFS^COD,此時,PELx軸,則尸(-1,4).

【詳解】(1)解:在中,OA=1,tanZBAO=—=3,..05=304=3,

0A

?「△DOC是由AAOB繞點。逆時針旋轉(zhuǎn)90。而得到的,.?。。=。3=3.

.'.A,B,C的坐標分別為(1,0),(0,3),(-3,0),

a+b+c=0a=-l

代入解析式得:9〃-3b+c=0,解得:。=-2,.?.拋物線的解析式為>=-/_2%+3;

c=3c=3

121

(2)解:①存在點尸使APCD的面積最大,APCD的面積有最大值為五.

理由如下:設(shè)直線CZ)解析式為y=

—3k+m=0k=-???直線CD解析式為y=;x+1,

把。兩點坐標代入可得:

Cm=l,解得:3

如圖2,過尸作PNJ_尤軸,交X軸于點N,交直線CO于點

???P點橫坐標為f,.?.PN=f2-2f+3,MN=5+1,點在第二象限,點在M點上方,

-_PM=PN

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論