襄陽汽車職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)與云計(jì)算基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
襄陽汽車職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)與云計(jì)算基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
襄陽汽車職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)與云計(jì)算基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
襄陽汽車職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)與云計(jì)算基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
襄陽汽車職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)與云計(jì)算基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁襄陽汽車職業(yè)技術(shù)學(xué)院

《大數(shù)據(jù)與云計(jì)算基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、對于一個(gè)需要處理大規(guī)模時(shí)空數(shù)據(jù)的物流大數(shù)據(jù)系統(tǒng),以下哪種技術(shù)能夠提供有效的軌跡分析和預(yù)測?()A.軌跡挖掘算法B.時(shí)空數(shù)據(jù)庫C.機(jī)器學(xué)習(xí)模型D.以上都是2、在大數(shù)據(jù)存儲中,NewSQL數(shù)據(jù)庫試圖結(jié)合傳統(tǒng)關(guān)系型數(shù)據(jù)庫和NoSQL數(shù)據(jù)庫的優(yōu)點(diǎn)。以下關(guān)于NewSQL數(shù)據(jù)庫的特點(diǎn),哪一項(xiàng)描述不準(zhǔn)確?()A.支持強(qiáng)事務(wù)一致性B.具有良好的可擴(kuò)展性C.數(shù)據(jù)存儲方式通常為鍵值對D.能夠處理大規(guī)模數(shù)據(jù)3、在大數(shù)據(jù)安全領(lǐng)域,訪問控制是保護(hù)數(shù)據(jù)的重要手段。以下關(guān)于訪問控制的描述,錯(cuò)誤的是?()A.訪問控制可以防止未經(jīng)授權(quán)的用戶訪問數(shù)據(jù)B.基于角色的訪問控制是一種常見的訪問控制策略C.訪問控制只適用于數(shù)據(jù)庫中的數(shù)據(jù),對文件系統(tǒng)中的數(shù)據(jù)無效D.訪問控制需要根據(jù)數(shù)據(jù)的敏感程度設(shè)置不同的權(quán)限級別4、大數(shù)據(jù)中的數(shù)據(jù)血緣追蹤可以幫助理解數(shù)據(jù)的來龍去脈。以下關(guān)于數(shù)據(jù)血緣追蹤工具和技術(shù),哪項(xiàng)說法不準(zhǔn)確?()A.一些商業(yè)的大數(shù)據(jù)管理平臺提供了內(nèi)置的數(shù)據(jù)血緣追蹤功能B.可以通過自定義腳本和數(shù)據(jù)庫元數(shù)據(jù)來實(shí)現(xiàn)數(shù)據(jù)血緣的追蹤C(jī).數(shù)據(jù)血緣追蹤技術(shù)能夠自動發(fā)現(xiàn)和記錄數(shù)據(jù)處理過程中的所有變化D.數(shù)據(jù)血緣追蹤只適用于關(guān)系型數(shù)據(jù)庫,對非關(guān)系型數(shù)據(jù)庫不適用5、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)血緣關(guān)系的維護(hù)至關(guān)重要。以下關(guān)于數(shù)據(jù)血緣關(guān)系維護(hù)的好處,哪一項(xiàng)是不正確的?()A.便于數(shù)據(jù)的溯源和審計(jì)B.有助于優(yōu)化數(shù)據(jù)處理流程C.能夠提高數(shù)據(jù)的安全性D.方便進(jìn)行數(shù)據(jù)質(zhì)量評估6、大數(shù)據(jù)的分析結(jié)果需要以有效的方式呈現(xiàn)給決策者。假設(shè)一個(gè)大數(shù)據(jù)分析項(xiàng)目得出了關(guān)于市場競爭態(tài)勢的結(jié)論。以下哪種報(bào)告形式最能幫助決策者快速理解和做出決策?()A.詳細(xì)的技術(shù)報(bào)告B.簡潔的摘要報(bào)告C.交互式的可視化儀表盤D.以上形式結(jié)合使用7、在大數(shù)據(jù)處理中,數(shù)據(jù)傾斜是一個(gè)常見的問題。以下關(guān)于數(shù)據(jù)傾斜的描述,哪一個(gè)是不準(zhǔn)確的?()A.數(shù)據(jù)傾斜可能導(dǎo)致某些任務(wù)的處理時(shí)間過長B.可以通過數(shù)據(jù)預(yù)處理和優(yōu)化算法來解決數(shù)據(jù)傾斜問題C.數(shù)據(jù)傾斜只會出現(xiàn)在分布式計(jì)算環(huán)境中D.合理的分區(qū)策略有助于緩解數(shù)據(jù)傾斜8、大數(shù)據(jù)中的情感分析用于判斷文本中的情感傾向。以下關(guān)于情感分析的應(yīng)用場景和方法,哪項(xiàng)描述不準(zhǔn)確?()A.情感分析可應(yīng)用于社交媒體監(jiān)測、客戶反饋分析和產(chǎn)品評價(jià)等領(lǐng)域B.基于詞典的方法通過查找預(yù)定義的情感詞來判斷情感傾向C.機(jī)器學(xué)習(xí)方法,如樸素貝葉斯和支持向量機(jī),也可用于情感分析D.情感分析只能處理簡單的正面、負(fù)面和中性情感,無法識別更復(fù)雜的情感9、在大數(shù)據(jù)可視化中,為了展示數(shù)據(jù)的分布和概率密度,以下哪種圖表類型通常被使用?()A.概率密度圖B.核密度估計(jì)圖C.累積分布函數(shù)圖D.以上都是10、在大數(shù)據(jù)分析項(xiàng)目中,數(shù)據(jù)可視化可以幫助用戶更好地理解數(shù)據(jù)。如果要展示數(shù)據(jù)隨時(shí)間的變化趨勢,以下哪種可視化方式最直觀?()A.柱狀圖B.折線圖C.餅圖D.箱線圖11、在大數(shù)據(jù)分析中,為了評估模型的泛化能力,以下哪種方法經(jīng)常被使用?()A.交叉驗(yàn)證B.留出法C.自助法D.以上都是12、大數(shù)據(jù)的特點(diǎn)通常包括Volume(大量)、Velocity(高速)、Variety(多樣)和Value(價(jià)值)。當(dāng)處理來自不同來源、格式各異的數(shù)據(jù)時(shí),為了實(shí)現(xiàn)有效的數(shù)據(jù)分析,首先需要解決的問題是什么?()A.選擇合適的數(shù)據(jù)分析算法B.對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化和整合C.確定數(shù)據(jù)的存儲方式D.評估數(shù)據(jù)的價(jià)值和重要性13、在處理大數(shù)據(jù)時(shí),數(shù)據(jù)壓縮技術(shù)可以節(jié)省存儲空間和提高傳輸效率。以下哪種數(shù)據(jù)壓縮算法常用于大數(shù)據(jù)處理?()A.ZIP算法B.GZIP算法C.LZ77算法D.以上都是14、在大數(shù)據(jù)環(huán)境中,數(shù)據(jù)集成涉及多個(gè)數(shù)據(jù)源的整合。以下關(guān)于數(shù)據(jù)集成過程中可能遇到的問題,哪一項(xiàng)描述不準(zhǔn)確?()A.數(shù)據(jù)源的數(shù)據(jù)格式不一致B.不同數(shù)據(jù)源的數(shù)據(jù)語義存在差異C.數(shù)據(jù)集成會導(dǎo)致數(shù)據(jù)量大幅減少D.數(shù)據(jù)的重復(fù)和沖突15、大數(shù)據(jù)分析平臺有很多種,以下關(guān)于大數(shù)據(jù)分析平臺的描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)分析平臺可以提供數(shù)據(jù)存儲、處理、分析等功能B.大數(shù)據(jù)分析平臺可以支持多種數(shù)據(jù)分析算法和工具C.大數(shù)據(jù)分析平臺只適用于大規(guī)模企業(yè),不適用于中小企業(yè)D.大數(shù)據(jù)分析平臺需要具備高可用性和可擴(kuò)展性16、隨著大數(shù)據(jù)應(yīng)用的普及,數(shù)據(jù)可視化工具也不斷發(fā)展。以下關(guān)于數(shù)據(jù)可視化工具的選擇因素,哪項(xiàng)說法不準(zhǔn)確?()A.應(yīng)考慮工具對不同數(shù)據(jù)源的支持能力,以便能夠整合多種數(shù)據(jù)進(jìn)行可視化分析B.工具的交互性和用戶體驗(yàn)對于用戶深入探索數(shù)據(jù)和發(fā)現(xiàn)洞察非常重要C.可視化工具的價(jià)格是選擇的唯一決定性因素,應(yīng)選擇價(jià)格最低的工具D.工具的可擴(kuò)展性和與其他系統(tǒng)的集成能力也是需要考慮的因素之一17、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)血緣關(guān)系的追蹤非常重要。以下關(guān)于數(shù)據(jù)血緣關(guān)系的描述,不正確的是()A.數(shù)據(jù)血緣關(guān)系能夠清晰展示數(shù)據(jù)的來源和流向B.有助于理解數(shù)據(jù)的產(chǎn)生過程和變化情況C.數(shù)據(jù)血緣關(guān)系只在數(shù)據(jù)倉庫中存在,其他數(shù)據(jù)存儲系統(tǒng)中不存在D.對于數(shù)據(jù)質(zhì)量的評估和問題追溯具有重要意義18、大數(shù)據(jù)在教育領(lǐng)域有廣泛的應(yīng)用,以下關(guān)于大數(shù)據(jù)在教育領(lǐng)域的應(yīng)用描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)可以用于學(xué)生學(xué)習(xí)行為分析和個(gè)性化教學(xué),提高教學(xué)質(zhì)量和效果B.大數(shù)據(jù)可以用于教育資源管理和優(yōu)化,提高教育資源的利用效率和公平性C.大數(shù)據(jù)可以用于教育評估和決策支持,提高教育管理的科學(xué)性和有效性D.大數(shù)據(jù)在教育領(lǐng)域的應(yīng)用只局限于學(xué)校教育,不能應(yīng)用于在線教育和終身教育19、在大數(shù)據(jù)存儲方面,NoSQL數(shù)據(jù)庫與傳統(tǒng)的關(guān)系型數(shù)據(jù)庫相比,具有一些獨(dú)特的優(yōu)勢。以下哪項(xiàng)不是NoSQL數(shù)據(jù)庫的主要特點(diǎn)?()A.支持復(fù)雜的關(guān)聯(lián)查詢B.靈活的數(shù)據(jù)模型C.良好的可擴(kuò)展性D.高并發(fā)讀寫性能20、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)倉庫和數(shù)據(jù)集市有不同的應(yīng)用場景。如果一個(gè)企業(yè)需要為不同部門提供定制化的數(shù)據(jù)服務(wù),更適合采用哪種技術(shù)?()A.數(shù)據(jù)倉庫B.數(shù)據(jù)集市C.兩者都可以,效果相同D.兩者都不適用21、大數(shù)據(jù)中的數(shù)據(jù)預(yù)處理技術(shù)包括數(shù)據(jù)清洗、集成、轉(zhuǎn)換和規(guī)約等。對于數(shù)據(jù)規(guī)約的目的和方法,以下描述錯(cuò)誤的是:()A.數(shù)據(jù)規(guī)約的目的是減少數(shù)據(jù)量,提高數(shù)據(jù)處理效率,同時(shí)保持?jǐn)?shù)據(jù)的完整性和準(zhǔn)確性B.數(shù)據(jù)規(guī)約可以通過特征選擇、主成分分析等方法實(shí)現(xiàn)C.數(shù)據(jù)規(guī)約會導(dǎo)致數(shù)據(jù)信息的丟失,因此應(yīng)盡量避免使用D.抽樣是一種常見的數(shù)據(jù)規(guī)約方法,可以通過隨機(jī)抽樣或分層抽樣來減少數(shù)據(jù)量22、在大數(shù)據(jù)的數(shù)據(jù)清洗中,處理重復(fù)數(shù)據(jù)的方法有多種。假設(shè)我們有一個(gè)大規(guī)模的數(shù)據(jù)集,存在大量重復(fù)記錄,以下哪種方法可以高效地去除重復(fù)數(shù)據(jù)?()A.排序后逐個(gè)比較去除B.使用哈希表進(jìn)行快速判斷和去除C.隨機(jī)選擇一部分?jǐn)?shù)據(jù)保留,其余刪除D.對重復(fù)數(shù)據(jù)進(jìn)行合并處理23、某電商平臺擁有龐大的用戶行為數(shù)據(jù),包括瀏覽記錄、購買記錄、評價(jià)記錄等。為了更好地了解用戶的興趣和行為模式,從而進(jìn)行精準(zhǔn)的商品推薦,需要對這些數(shù)據(jù)進(jìn)行深入的分析。在這個(gè)過程中,以下哪項(xiàng)技術(shù)不是必需的?()A.數(shù)據(jù)清洗和預(yù)處理B.關(guān)聯(lián)規(guī)則挖掘C.分布式文件系統(tǒng)D.傳統(tǒng)的關(guān)系型數(shù)據(jù)庫管理系統(tǒng)24、隨著物聯(lián)網(wǎng)設(shè)備的普及,產(chǎn)生了大量的實(shí)時(shí)數(shù)據(jù)。在處理物聯(lián)網(wǎng)數(shù)據(jù)時(shí),以下哪個(gè)因素對于保證數(shù)據(jù)的準(zhǔn)確性和可靠性最為關(guān)鍵?()A.數(shù)據(jù)采集頻率B.數(shù)據(jù)傳輸協(xié)議C.設(shè)備的硬件性能D.數(shù)據(jù)的預(yù)處理25、在大數(shù)據(jù)分析中,數(shù)據(jù)挖掘的目的是發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和關(guān)系。以下哪個(gè)不是數(shù)據(jù)挖掘的主要任務(wù)?()A.數(shù)據(jù)分類B.數(shù)據(jù)加密C.數(shù)據(jù)聚類D.關(guān)聯(lián)規(guī)則發(fā)現(xiàn)26、在大數(shù)據(jù)的分類算法中,隨機(jī)森林是一種集成學(xué)習(xí)方法。假設(shè)我們有一個(gè)不平衡的數(shù)據(jù)集,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下關(guān)于隨機(jī)森林處理不平衡數(shù)據(jù)的說法,哪一項(xiàng)是不正確的?()A.隨機(jī)森林對不平衡數(shù)據(jù)具有較好的魯棒性B.可以通過過采樣或欠采樣來平衡數(shù)據(jù)后再使用隨機(jī)森林C.隨機(jī)森林在處理不平衡數(shù)據(jù)時(shí)不需要進(jìn)行特殊處理D.調(diào)整隨機(jī)森林的參數(shù)可以提高對少數(shù)類別的分類性能27、大數(shù)據(jù)在交通領(lǐng)域有廣泛的應(yīng)用,以下關(guān)于大數(shù)據(jù)在交通領(lǐng)域的應(yīng)用描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)可以用于交通流量監(jiān)測和預(yù)測,提高交通管理的效率和準(zhǔn)確性B.大數(shù)據(jù)可以用于智能交通系統(tǒng)的建設(shè)和優(yōu)化,提高交通運(yùn)輸?shù)陌踩院捅憬菪訡.大數(shù)據(jù)可以用于交通規(guī)劃和決策支持,提高城市交通的可持續(xù)性和發(fā)展水平D.大數(shù)據(jù)在交通領(lǐng)域的應(yīng)用只局限于城市交通,不能應(yīng)用于高速公路和鐵路等交通領(lǐng)域28、在大數(shù)據(jù)的異常檢測中,需要從大量正常數(shù)據(jù)中找出異常值。假設(shè)我們有一個(gè)網(wǎng)絡(luò)流量數(shù)據(jù)集,其中大部分流量是正常的,但存在一些異常的高峰值。以下哪種方法常用于網(wǎng)絡(luò)流量的異常檢測?()A.基于統(tǒng)計(jì)的方法,如計(jì)算均值和標(biāo)準(zhǔn)差B.基于機(jī)器學(xué)習(xí)的方法,如使用支持向量機(jī)C.基于深度學(xué)習(xí)的方法,如使用自編碼器D.以上方法都經(jīng)常被使用,具體取決于數(shù)據(jù)特點(diǎn)和需求29、大數(shù)據(jù)安全和隱私保護(hù)是至關(guān)重要的問題。以下關(guān)于大數(shù)據(jù)安全和隱私保護(hù)措施的敘述,錯(cuò)誤的是()A.數(shù)據(jù)加密可以保障數(shù)據(jù)在傳輸和存儲過程中的安全性B.訪問控制可以限制用戶對數(shù)據(jù)的訪問權(quán)限C.匿名化處理能夠完全消除數(shù)據(jù)中的個(gè)人隱私信息D.數(shù)據(jù)備份與恢復(fù)與大數(shù)據(jù)安全和隱私保護(hù)無關(guān)30、大數(shù)據(jù)可視化在數(shù)據(jù)分析和展示中具有重要作用。關(guān)于大數(shù)據(jù)可視化的目標(biāo)和挑戰(zhàn),以下描述不正確的是:()A.大數(shù)據(jù)可視化的目標(biāo)是將復(fù)雜的數(shù)據(jù)以直觀、易懂的形式呈現(xiàn)給用戶,幫助用戶快速理解數(shù)據(jù)的內(nèi)涵和趨勢B.挑戰(zhàn)之一是如何在有限的屏幕空間內(nèi)展示海量的數(shù)據(jù),同時(shí)保持信息的清晰和可理解性C.另一個(gè)挑戰(zhàn)是如何根據(jù)用戶的需求和分析目的,選擇合適的可視化圖表和交互方式D.大數(shù)據(jù)可視化只需要關(guān)注數(shù)據(jù)的展示效果,無需考慮數(shù)據(jù)的準(zhǔn)確性和實(shí)時(shí)性二、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)基于HBase,設(shè)計(jì)并實(shí)現(xiàn)一個(gè)存儲和查詢海量氣象數(shù)據(jù)(如溫度、濕度、氣壓、風(fēng)速)的系統(tǒng),支持按地區(qū)和時(shí)間范圍查詢。2、(本題5分)使用Python的Pandas庫,分析一個(gè)包含在線購物平臺商品評價(jià)關(guān)鍵詞數(shù)據(jù)的大規(guī)模數(shù)據(jù)集。找出出現(xiàn)頻率最高的10個(gè)關(guān)鍵詞,并計(jì)算它們的總出現(xiàn)次數(shù)。3、(本題5分)使用Python的機(jī)器學(xué)習(xí)庫,對一個(gè)包含信用卡交易數(shù)據(jù)的數(shù)據(jù)集進(jìn)行異常檢測,找出可能的欺詐交易。4、(本題5分)用Python結(jié)合HBase數(shù)據(jù)庫,實(shí)現(xiàn)一個(gè)程序來存儲和查詢大量的物流運(yùn)輸數(shù)據(jù),包括運(yùn)輸單號、起始地、目的地、運(yùn)輸時(shí)間等,并能夠根據(jù)運(yùn)輸時(shí)間進(jìn)行范圍查詢。5、(本題5分)利用MapReduce編程模型,對一個(gè)包含大量文本文件的數(shù)據(jù)集進(jìn)行處理,統(tǒng)計(jì)每個(gè)單詞出現(xiàn)的頻率,并按照頻率降序排列輸出前50個(gè)高頻單詞。三、簡答題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論