北師大版九年級數學上冊一元二次方程《一元二次方程根與系數的關系》教學課件_第1頁
北師大版九年級數學上冊一元二次方程《一元二次方程根與系數的關系》教學課件_第2頁
北師大版九年級數學上冊一元二次方程《一元二次方程根與系數的關系》教學課件_第3頁
北師大版九年級數學上冊一元二次方程《一元二次方程根與系數的關系》教學課件_第4頁
北師大版九年級數學上冊一元二次方程《一元二次方程根與系數的關系》教學課件_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第5節(jié)

一元二次方程的根與系數的關系第二章

一元二次方程九年級數學上冊?北師大版復習回顧1.掌握一元二次方程的根與系數的關系.(重點)2.會利用根與系數的關系解決有關的問題.(難點)復習回顧1.一元二次方程的一般形式?ax2+bx+c=0(a≠0)2.一元二次方程有實數根的條件是什么?△=b2-4ac≥03.當△>0,△=0,△<0根的情況如何?△>0時,方程有兩個不相等的實數根;△=0時,方程有兩個相等的實數根;△<0時,方程沒有實數根;4.一元二次方程的求根公式是什么?方程ax2+bx+c=0(a≠0)的求根公式不僅表示可以由方程的系數a,b,c決定根的值,而且反映了根與系數之間的聯(lián)系,一元二次方程根與系數之間的聯(lián)系還有其他表現方式嗎?一元二次方程根與系數的關系1—解下列方程,看誰能更快速的說出下列一元二次方程的兩根和與兩根積?

(1)x2-2x+1=0(2)x2-x-1=0

(3)2x2-3x+1=0計算填表:方程x1x2x1+x2x1x2x2-2x+1=0x2-x-1=0

2x2-3x

+1=01121-11每個方程的兩根之和與它的系數有什么關系?兩根之積呢?對于任何一個一元二次方程,這種關系都成立嗎?與同伴交流。一元二次方程ax2+bx+c=0(a≠0)當b2-4ac≥0時有兩個根:x1+x2=x1x2=

證一證:典例精析例1.利用根與系數的關系,求下列方程的兩根之和、兩根之積:(1)x2+7x+6=0;(2)2x2-3x-2=0.解:(1)這里a=1,b=7,c=6.△=b2-4ac=72+4×1×6=49-24=25>0∴方程有兩個實數根.設方程的兩個實數根是x1,x2,那么.x1+x2=-7,x1x2=6.(2)這里a=2,b=-3,c=-2.△=b2-4ac=(-3)2-4×2×(-2)=9+16=25>0∴方程有兩個實數根.設方程的兩個實數根是x1,x2,那么.x1+x2=,x1x2=-1.典例精析例2.設x1,x2

是方程4x2-7=2x2+8x的兩個實數根,求x1+x2和x1x2

的值.

例3.已知實數x1,x2

滿足x1+x2=7,x1x2=12,則以x1,x2

為根的一元二次方程是()A.x2-7x+12=0 B.x2+7x+12=0C.x2+7x-12=0 D.x2-7x-12=0典例精析

A

隨堂即練1.已知方程3x2-19x+m=0的一個根是1,求它的另一個根及m的值.2.已知m,n是一元二次方程x2+x-2023=0的兩個實數根,則代數式m2+2m+n的值等于()A.2021 B.2022C.2023 D.20243.若x1+x2=3,x12+x22=5,則以x1,x2為根的一元二次方程是()A.x2-3x+2=0 B.x2+3x-2=0C.x2+3x+2=0 D.x2-3x-2=0課堂總結通過這節(jié)課的學習活動,你有什么收獲?2.應用一元二次方程的根與系數關系時,首先要把已知方程化成一般形式.3.應用一元二次方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論