




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
11函數(shù)是高中數(shù)學(xué)主干知識(shí),單調(diào)性是函數(shù)的重要性質(zhì),用導(dǎo)數(shù)研究函數(shù)單調(diào)性是導(dǎo)數(shù)的一個(gè)主要應(yīng)1.(2024·全國(guó)·高考真題)已知函數(shù)f(x(=a(x-1(-lnx+1.(1)求f(x(的單調(diào)區(qū)間;f/(x)<02.(2023·全國(guó)·高考真題)已知函數(shù)f(x(=a(ex+(1)討論f(x(的單調(diào)性;思路詳解:(1)因?yàn)閒(x)=a(ex+a(-x所以f(x(在R上單調(diào)遞減;當(dāng)x<-lna時(shí),f/(x(<0,則f(x(在(-∞,-lna(上單調(diào)遞減;當(dāng)x>-lna時(shí),f/(x(>0,則f(x(在(-lna,+∞(上單調(diào)遞增;當(dāng)a>0時(shí),f(x(在(-∞,-lna(上單調(diào)遞減,f(x(在(-lna,+∞(上單調(diào)遞增.(1)討論f(x)的單調(diào)性;f/(x(<0,f(x(單調(diào)遞減,22若x∈(0,+∞(,則f/(x(>0,f(x(單調(diào)遞增;當(dāng)0<a<時(shí),若x∈(-∞,ln(2a((,則f/(x(>0,f(x(單調(diào)遞增,若x∈(ln(2a(,0(,則f/(x(<0,f(x(單調(diào)遞減,若x∈(0,+∞(,則f/(x(>0,f(x(單調(diào)遞增;x(≥0,f(x(在R上單調(diào)遞增;f/(x(>0,f(x(單調(diào)遞增,若x∈(0,ln(2a((,則f/(x(<0,f(x(單調(diào)遞減,若x∈(ln(2a(,+∞(,則f/(x(>0,f(x(單調(diào)遞增;(1)求函數(shù)f(x(的單調(diào)區(qū)間;思路詳解:(1)f(x)=ax-bx+e2,f/(x)=axlna-b,①若b≤0,則f/(x)=axlna-b≥0,所以f(x)在R上單調(diào)遞增;當(dāng)x∈(-∞,loga時(shí),f'(x(<0,f(x(單調(diào)遞減,a,+∞(時(shí),f'(x(>0,f(x(單調(diào)遞增.5.(2024·江西新余·模擬預(yù)測(cè))已知函數(shù)f(x)=-alnx+(2a+1)x-x2.(2)討論f(x)的單調(diào)性.所以函數(shù)f(x)的圖象在(1,f(1))處的切線方程為y-1=-(x-1),即x+2y-3=0.(2)函數(shù)f(x)=-alnx+(2a+1)x-x2的定義域?yàn)?0,+∞),求導(dǎo)得f/(x)=-+(2a+1)-2x=-,f/(x)<033(1)求函數(shù)f(x(在x=0處的切線方程;(2)討論函數(shù)f(x(的單調(diào)性;思路詳解:(1)因?yàn)閒(x(=e2x-2(a+1(ex+2ax+2a+1(所以函數(shù)f(x(在x=0處的切線方程為y=0;(2)函數(shù)f(x(=e2x-2(a+1(ex+2ax+2a+1(a>0(的定義域?yàn)镽,且f/(x(=2e2x-2(a+1(ex+2a=2(ex-a((ex-1(,x(=2(ex-1(2≥0恒成立,所以f(x(在R上單調(diào)遞增;所以f(x(在(-∞,0(,(lna,+∞(上單調(diào)遞增,在(0,lna(上單調(diào)遞減;所以f(x(在(-∞,lna(,(0,+∞(上單調(diào)遞增,在(lna,0(上單調(diào)遞減;當(dāng)a>1時(shí),f(x(在(-∞,0(,(lna,+∞(上單調(diào)遞增,在(0,lna(上單調(diào)遞減;當(dāng)0<a<1時(shí),f(x(在(-∞,lna(,(0,+∞(上單調(diào)遞增,在(lna,0(上單調(diào)遞減.(1)討論f(x)的單調(diào)性;詳解:(1)函數(shù)f(x)=ae2x-(ax+2-a)ex+x2的定義域?yàn)镽,求導(dǎo)得f/(x)=2ae2x-(ax+2)ex+x=(aex-1)(2ex-x),函數(shù)φ(x)在(-∞,-ln2)上遞減,在(-ln2,+x-x>0,②當(dāng)a>0時(shí),由f/(x)<0,得x<-lna,由f/(x)>0,得x>-lna,函數(shù)f(x)在(-∞,-lna)上單調(diào)遞減,在(-lna,+∞)上單調(diào)遞增,當(dāng)a>0時(shí),f(x)在(-∞,-lna)上單調(diào)遞減,在(-lna,+∞)上單調(diào)遞增.44(1)討論f(x(的單調(diào)性;當(dāng)Δ=4-12a≤0,a≥時(shí),f/(x(≥0,f(x(在R上單調(diào)遞增,,x2=1+1-3a1-1,x2=1+1-3a1-1-3a31--3a,1+-3a(時(shí),f/(x(<0,f1-3a31-3a31-3a3,+∞1-3a31-3a31-3a3,+∞LL,1-3a3|2.(2024·青海海西·模擬預(yù)測(cè))已知函數(shù)f(x(=x3-x2+ax.(1)討論函數(shù)f(x(的單調(diào)性;,此時(shí)函數(shù)f(x(在R上單調(diào)遞增;2-2x+a=0的兩根為x=,此時(shí)函數(shù)f(x(的減區(qū)間為,,增區(qū)間為,+∞(;3.(2024·山東威?!ひ荒?已知函數(shù)f(x(=ln(ax(-x2+ax(a≠0(.(1)討論f(x(的單調(diào)性;55②當(dāng)a<0時(shí),f(x(的定義域?yàn)?-∞,0(,令f/(x(<0,2x2-ax-1<0,解得:<(1)證明曲線y=f(x(在x=1處的切線過原點(diǎn);(2)討論f(x(的單調(diào)性;所以f(x)在,上單調(diào)遞減;->1,665.函數(shù)f(x)=(x2+ax(ex(a∈R).(1)求f(x(的單調(diào)區(qū)間;f/(x)<0,f(x)單調(diào)遞減,f/(x(>0,f(x(在(0,+∞(上單調(diào)遞增2,x77(,g(x(<0所以f(x(在(0,x1(,(x2,+∞(單調(diào)遞增,在(x1,x2(單調(diào)遞減;故f(x(在(0,x2(單調(diào)遞減,(x2,+∞(單調(diào)遞增.綜上:a≥,f(x(在(0,+∞(上單調(diào)遞增;0<a<,f(x(在(0,1--2a(,(1+-2a,+∞(上單調(diào)遞增;7.已知函數(shù)f(x(=xlnx-x-a,g(x(=x2+lnx-ax.x(=2x+-a=2x2-+1,x>0,x(≥0恒成立,所以g(x(在(0,+∞(上單調(diào)遞增.2-ax+1=0的根為x=a±a2-8 定義1:若函數(shù)f(x)的導(dǎo)函數(shù)f/(x)在點(diǎn)x=x0處可導(dǎo),則稱f(x)在點(diǎn)x=x0的導(dǎo)數(shù)為f(x)在點(diǎn)x=x0的二階導(dǎo)數(shù),記作fⅡ(x0(,同時(shí)稱f(x)在點(diǎn)x=x0為二階可導(dǎo).88定義2:若f(x)在區(qū)間M上每一點(diǎn)都二階可導(dǎo),則得到一個(gè)定義在M上的二階可導(dǎo)函數(shù),記作fⅡ若f(x)在x=x0附近有連續(xù)的導(dǎo)函數(shù)fⅡ(x),且f/(x0(=0,fⅡ(x0(≠0(1)若fⅡ(x0(<0,則f(x)在點(diǎn)x0處取極大值;(2)若fⅡ(x0(>0,則f(x)在點(diǎn)x0處取極小值(1)討論f(x(的單調(diào)性;x(=a(eax-e-ax(令g(x(=a(eax-e-ax(,則g/(x(=a2(eax+e-ax(>0∴g(x(在R上單調(diào)遞增.f/(x(<0f/(x(>0∴f(x(在(-∞,0(上單調(diào)遞減,在(0,+∞(上單調(diào)遞增.解法二:f/(x(=a(eax-e-ax(=①當(dāng)a>0時(shí),由f/(x(<0得x<0,由f/(x(>0得x>0∴f(x(在(-∞,0(上單調(diào)遞減,在(0,+∞(上單調(diào)遞增②當(dāng)a<0時(shí),同理可得f(x(在(-∞,0(上單調(diào)遞減,在(0,+∞(上單調(diào)遞增.2.已知函數(shù)f(x(=x2-axlnx-1(a∈R(.-2xlnx-1,函數(shù)f(x(的定義域?yàn)?0,+∞(,f/(x(=2x-2(lnx+1(=2(x-lnx-1(.令g(x)=x-lnx-1,有g(shù)/(x)=,99可得函數(shù)f(x(單調(diào)遞增,3.已知函數(shù)f(x(=(ex-a-a(lnx+x+.思路詳解:(1)解法一:因?yàn)閒(x(=(ex-a-a(lnx+x+,所以f/(x)=ex-alnx+(ex-a-a(+1-=ex-axlnx+(ex-a-a(x?+x-x=ex+lnx-alnx+ex+lnx-a?-a+x-x=+lnx((ex+lnx-a-1)+x+lnx-ax易知+lnx≥+1-=1>0,設(shè)lnx0+x0=a,則當(dāng)0<x<x0時(shí),x+lnx-a<0,ex+lnx-a-1<0,所以f/(x)<0,則f(x(在(0,x0(單調(diào)遞減;當(dāng)x>x0時(shí),x+lnx-a>0,ex+lnx-a-1>0,所以f/(x)>0,則f(x(在(x0,+∞(單調(diào)遞增;當(dāng)a=1時(shí)f(x)=(ex-1-1)lnx+x+,則f/(x(=ex-1lnx++1-=ex-1(lnx++1--=-=>0x-1關(guān)于x單調(diào)遞增且ex-1>0,所以f/(x(單調(diào)遞增,則f/(x(>f/(1(=0,所以f(x(在(1,+∞(單調(diào)遞增.當(dāng)0<x<1時(shí),ex-1<e1-1=1,f/(x)=ex-1(lnx++1--<lnx++1--=lnx+1-,所以f/(x)<0,所以f(x(在(0,1(單調(diào)遞減.4.已知函數(shù)f(x(滿足f(x(=ex-x2.x(>0,所以m(x(在(-∞,ln2(上單調(diào)遞減,在(ln2,+∞(上單調(diào)遞增,所以m(x)min=m(ln2(=2(1-ln2(>0,即f/(x(>0恒成立,5.已知函數(shù)f(x(=x(alnx-x-1(,其中a∈R.則f/(x)=lnx-2x(x>0),設(shè)g(x)=lnx-2x(x>0),(x)=-2=,得g(x)max=g=ln-1=-ln2-1<0,即f/(x)=g(x)<0,6.已知函數(shù)f(x(=ex+a-ln(x+1(-a(a∈R(.令h(x(=f/(x(,則h/(x(=ex+>0在x∈(-1,+∞(上恒成立,所以h(x(在(-1,+∞(上單調(diào)遞增,即f/(x(在(-1,+∞(上單調(diào)遞增.1.(2024·全國(guó)·高考真題)已知函數(shù)f(x(=a(x-1(-lnx+1.(1)求f(x(的單調(diào)區(qū)間;-1恒成立.f/(x)<0x-1-f(x)=ex-1-a(x-1)+lnx-1≥ex-1-2x+1+lnx,令g(x)=ex-1-2x+1+lnx(x>1),下證g(x)>0即可.(1)求曲線y=f(x(在x=2處的切線斜率;(2)要證x>0時(shí)f(x(=+ln(x+1(>1,即證ln(x+1(>,令g(x)=ln(x+1(-且x>0,則g/(x)=-=>0,所以x>0時(shí)f(x(>1.=<1,∵x>0,ln(1-x(<0,∴xln(1-x(<0,即證x+ln(1-x(>xln(1-x(,化簡(jiǎn)得x+(1-x(ln(1-x(>0;=<1,∵x<0,ln(1-x(>0,∴xln(1-x(<0,即證x+ln(1-x(>xln(1-x(,化簡(jiǎn)得x+(1-x(ln(1-x(>0;令φ(t(=1-t+tlnt,φ/(t(=-1+lnt+1=lnt,(2)求f(x(的極值;-ln(x+1(+1,函數(shù)f(x(的定義域?yàn)?-1,+∞(.f/(x(=,x(>0.因此f(x(在(-1,0(單調(diào)遞減,在(0,+∞(單調(diào)遞增,故f(x(的最小值為f(0(=1.(2)f(x(的定義域?yàn)?-1,+∞(,f/(x(=a-.,故f(x(在(-1,+∞(單調(diào)遞減,f(x(無(wú)極值;0得x=-1.當(dāng)-1<x<-1時(shí),f/(x(<0;因此f(x(在(-1,-1(單調(diào)遞減,在-1,+∞(單調(diào)遞增,故f(x(有極小值f-1(=2-a+lna,無(wú)極大值.(3)解法1:令g(x(=f(x(-ex=ax-ln(x+1(+1-ex(-1<x<0),/(x(=a--ex,令h(x(=a--ex,則h/(x(=-ex,因此h/(x(>0,h(x(在(-1,0(單調(diào)遞增,h(x(<h(0(=a-2≤0,即g/(x(<0,故g(x(在(-1,0(單調(diào)遞減,g(x(>g(0(=0,即當(dāng)-1<x<0時(shí),f(x(>ex.解法2:因?yàn)閍≤2,-1<x<0,所以f(x(要證當(dāng)-1<x<0時(shí),f(x(>ex,即證2x-ln(x+1(+1-er>0,令g(x(=2x-ln(x+1(+1-ex(-1<x<0),g/(x(=2--ex,令h(x(=2--ex,則h/(x(=-ex,因?yàn)?1<x<0,所以>1,ex<1,因此h/(x(>0,h(x(在(-1,0(單調(diào)遞增,h(x(<h(0(=0,解法3:令g(x(=f(x(-ex=ax-ln(x+1(+1-ex(-1<x<0),g/(x(=a--ex,由(1)可知x-ln(x+1(≥0,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào),g/(x(=a--ex<a--(x+1(<a-2≤0,即g/(x(<0,故g(x(在(-1,0(單調(diào)遞減,g(x(>g(0(=0,即當(dāng)-1<x<0時(shí),f(x(>ex.t(=et-t(t<0),則g/(t(=et-1<0,故g(t(在(-∞,0(單調(diào)遞減.-1<x<0時(shí),ln(x+1(<x<0,所以g[ln(x+1([>g(x(,即:x+1-ln(x+1(>ex-x,故2x-ln(x+1(+1>ex,而a≤2,-1<x<0,所以f(x(≥2x-ln(x+1(+1>ex.t(=t-lnt(0<t<1),因?yàn)間/(t(=<0,所以g(t(在(0,1(單調(diào)遞減.由(1)可知:當(dāng)-1<x<0時(shí),ln(x+1(<x<0,所以0<x+1<er<1,g(x+1(>g(er(,即:x+1-ln(x+1(>ex-x,故2x-ln(x+1(+1>ex,而a≤2,-1<x<0,所以f(x(≥2x-ln(x+1(+1>ex.5.(2024·浙江寧波·一模)已知函數(shù)f(x(=1+2ax2-axsinx.(1)判斷f(x(的奇偶性;(1)f(x(=1+2ax2-axsinx,L-2a-2aLL-2a-2aL且f(-x(=1+2a(-x(2-a(-x(sin(-x(=1+2ax2-axsinx=f(x(,故f(x(為偶函數(shù),(2)當(dāng)a=-時(shí),f(x(=1-x2+xsinx為偶函數(shù),要證f(x(≤1,只需要證1-x2≤1-xsinx,當(dāng)-1≤x≤1時(shí),1-xsinx>0,只需證明0≤x≤1時(shí),1-x2≤(1-xsinx(2,即證x2-xsinx+x2sin2x≥0,只需證x-sinx≥0,即證x≥sinx,令g(x(=x-sinx,g/(x)=1-cosx≥0,g(x(在0≤x≤1單調(diào)遞增,故g(x(≥g(0(=0,所以x≥sinx,得證.6.(2024·廣東·二模)已知函數(shù)f(x)=ex-1-xlnx.(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)證明:f(x)>0.(1)y=1fl(x(=ex-1-(lnx+1),則k=fl(1)=0,①當(dāng)0<x<1時(shí),ex-1>e-1,xlnx<0,則ex-1>xlnx,即f(x)>0;②當(dāng)x≥1時(shí),fl(x(=ex-1-(lnx+1)=ex-1-lnx-1.x-1-xlnx≥1,要證f(x)>0,只需證ex-1>xlnx,只需證>,x2x2?x-lnx=1-x2x2>≥g(x),也就是>,即f(x)>0x.x.(3)求證:f(x)≥x-lnx+e-1.(2)結(jié)合函數(shù)f(x)的圖象求解即可;(3)轉(zhuǎn)化為證明-x+lnx≥e-1,構(gòu)造函數(shù)g(x(=-x+lnx,x>0,進(jìn)而結(jié)合導(dǎo)數(shù)證明即可.所以函數(shù)f(x)在(-∞,0(和(0,1(上單調(diào)遞減,在(1,+∞(上單調(diào)遞增,(3)證明:由f(x)≥x-lnx+e-1,x>0,即≥x-lnx+e-1,即-x+lnx≥e-1,設(shè)g(x(=-x+lnx,x>0,令h(x(=ex-x,ex-1>0,所以函數(shù)h(x(在(0,+∞(上單調(diào)遞增,則h(x(=ex-x>h(0(=1>0所以令g/(x(>0所以函數(shù)g(x(在(0,1(上單調(diào)遞減,在(1,+∞(上單調(diào)遞增,所以g(x(=-x+lnx≥g(1(=e-1,所以f(x)≥x-lnx+e-1.①?x∈D,g(a(≤f(x(,則只需要g(a(≤f(x(min=m<f(x(,則只需要g(a(<f(x(min=m②?x∈D,g(a(≥f(x(,則只需要g(a(≥f(x(max=M>f(x(,則只需要g(a(>f(x(max=M<f(x(,則只需要g(a(≤m(注意與(1)中對(duì)應(yīng)情況進(jìn)行對(duì)比)≥f(x(,則只需要g(a(≥M點(diǎn).①?x∈D,g(a(≤f(x(,則只需要g(a(≤f(x(max=M<f(x(,則只需要g(a(<f(x(max=M②?x∈D,g(a(≥f(x(,則只需要g(a(≥f(x(min=m>f(x(,則只需要g(a(>f(x(min=m<f(x(,則只需要g(a(<M>f(x(,則只需要g(a(>m點(diǎn).故f/(x)=2ln(1+x)+-1=2ln(1+x)-+1,因?yàn)閥=2ln(1+x),y=-+1在(-1,+∞(上為增函數(shù),故當(dāng)-1<x<0時(shí),f/(x)<0,當(dāng)x>0時(shí),f/(x)>0,故f(x(在x=0處取極小值且極小值為f(0(=0,無(wú)極大值.x(=-aln(1+x(+-1=-aln(1+x(-,x>0,設(shè)s(x(=-aln(1+x(-,x>0,x(=-=-=-,所以f(x(在[0,+∞(上為增函數(shù),故f(x(≥f(0(=0.當(dāng)-<a<0時(shí),當(dāng)0<x<-時(shí),s/(x(<0,x(<0在(0,+∞(上恒成立,綜上,a≤-.=a-=a-=a-則f/(x)=g(t)=a-=當(dāng)a=8,f/(x)=g(t)==f/(x)<0.f/(x)>0.(2)設(shè)g(x)=f(x)-sin2xg/(x)=f/(x)-2cos2x=g(t)-2(2cos2x-1(=-2(2t-1)=a+2-4t+-設(shè)φ(t)=a+2-4t+-t)=-4-+==->0(x)=φ(t)<a-3≤0x0(=0.綜上,a的取值范圍為(-∞,3].x-2elnx+x,要證明f(x(>x,即證g(x(=f(x(-x=ex-2elnx->0;x(<0,即可得h(x(在(0,1(上單調(diào)遞減,x(>0,即可得h(x(在(1,+∞(上單調(diào)遞增,x≥ex;x(<0,即可得p(x(在(0,e(上單調(diào)遞減,x(>0,即可得p(x(在(e,+∞(上單調(diào)遞增,故x≥elnx;x-2elnx->ex-2x-=(e-x>0,故f(x(>x;(2)易知f(x(=ex-2elnx+ax+lna≥令m(x(=ex-2elnx+ex+1,則m/(x(=ex-+e,x(<0,即可得m(x(在(0,1(上單調(diào)遞減,x(>0,即可得m(x(在(1,+∞(上單調(diào)遞增,4.(2024·遼寧·模擬預(yù)測(cè))已知函數(shù)f(x(=(ax-1(ex+1+3(a≠0(.(1)求f(x(的極值;(2)設(shè)a=1,若關(guān)于x的不等式f(x(≤(b-1(ex+1-x在區(qū)間[-1,+∞(內(nèi)有解,求b的取值范圍.f/(x(>0f/(x(<0(2)a=1時(shí),f(x(≤(b-1(ex+1-x等價(jià)于b≥+x,則b≥+x在區(qū)間[-1,+∞(內(nèi)有解.ex+1-(x+2(令g(x(=+xex+1-(x+2(=ex+1-1在[-1,+∞(上單調(diào)遞增,有h/(x(≥h/(-1=ex+1-1在[-1,+∞(上單調(diào)遞增,有h/(x(≥h/(-1(=0,所以h(x(在區(qū)間[-1,+∞(內(nèi)單調(diào)遞增,即h(x(≥h(-1(=0,所以g/(x(≥0在區(qū)間[-1,+∞(內(nèi)恒成立,(2)若存在x0則f/(x(=1+則f/(x(=1+-2x2+x+1xx-2x==--2x2+x+1xx-2x==-當(dāng)0<x<1時(shí),f/當(dāng)0<x<1時(shí),f/(x(=-(2x+1((x-1(xx(x(=-(2x+1((x-1(x8a81-44.28a81-44.2f(x0(>f(1)=0.0>0.而f/(x)=2x-=,(2)因?yàn)椴坏仁絝(x(≤2(lnx(2+x2-2x在區(qū)間(1,+∞)上有解,所以(lnx)2+alnx-x+1≥0在區(qū)間(1,+∞(上有解,此時(shí)lnx>0,即a≥-lnx在區(qū)間(1,+∞(上有解,令g(x(=-lnx(x>1(,則g/(x(=-=.令h(x(=x-lnx-1(x>1(,則h/(x(=1-=>0,當(dāng)1<x<e時(shí)g/(x(<0;當(dāng)x>e時(shí)g/(x(>0,所以g(x(min=g(e(=e-2可.(x)<0,得x<lna;由f/(x)>0,得x>lna,(2)不等式f(x)≥x2+2?ex-ax+1≥x2+2?ax≤ex-x2-1,依題意,當(dāng)x>0時(shí),a≤-x-恒成立,令g(x)=-x-,x>0,求導(dǎo)得g/(x)=-1+=,令h(x)=ex-1-x,x>0,性即可.遞增.故f(x)min=f(a(=a-1-alna,由f(x(≥0恒成立,得a-1-alna≥0恒成立,令g(a(=a-1-alna(a>0(,求導(dǎo)得g/(a(=-lna,a(<0,所以g(a)max=g(1(=0,故g(a(=a-1-aln(x)=-2a=,max=φ=ln≤0,即f/(x)max≤0,所以f(x)的極值點(diǎn)的個(gè)數(shù)為0.(2)h(x)=xlnx-ax+1,-1(-1,+∞(所以h(x)min=h(ea-1(=1-ea-1,a-1+e-1,a-1+(e-1)(a-3)-1>0成立.(1)討論f(x(的單調(diào)性;(2)(-1,+∞((2)變形得到f(x(min<,在(1)的基礎(chǔ)上得到f(x(min=k-klnk,從而k-klnk<,再令g(k(=k值為h(1(=e1+a【詳解】(1)f(x(=ex-1-k(x-1(的定義域?yàn)镽,則f/(x(=ex-1-k,恒成立,故f(x(=ex-1-k(x-1(在R上單調(diào)遞增,故f(x(=ex-1-k(x-1(在(1+lnk,+∞(上單調(diào)遞增,在(-∞,1+lnk(上單調(diào)遞減,當(dāng)k>0時(shí),f(x(在(1+lnk,+∞(上單調(diào)遞增,在(-∞,1+lnk(上單調(diào)遞減;f(x(min<,由(1)知,k>0時(shí),f(x(在(1+lnk,+∞(上單調(diào)遞增,在(-∞,1+lnk(上單調(diào)遞減;故f(x(在x=1+lnk處取得極小值,也是最小值,故f(x(min=e1+lnk-1-k(1+lnk-1(=k-klnk,即證k-klnk<,令g(k(=k-klnk,k>0,則g/(k(=1-lnk-1=-lnk,k(<0,k(>0,1.(2022·全國(guó)·高考真題)已知函數(shù)=ax-lnx.思路詳解:(1)當(dāng)a=0時(shí),f(x(=--lnx,x>0,則f/(x(=-=,f/(x(>0,f(x(單調(diào)遞增;,f(x(單調(diào)遞減;所以f(x(max=f(1(=-1;(2)f(x(=ax--(a+1(lnx,x>0,則f/(x(=a+-=,f/(x(>0,f(x(單調(diào)遞增;,f(x(單調(diào)遞減;x(>0,f(x(單調(diào)遞增;x(<0,f(x(單調(diào)遞減;又f(1(=a-1<0,由(1)得+lnx≥1,即ln≥1-x,所以lnx<當(dāng)x>1時(shí),f(x)=ax--(a+1)lnx>ax--2(a+1)x>ax-(2a+3)x,所以f(x(僅在,+∞(有唯一零點(diǎn),符合題意;所以f(x(有唯一零點(diǎn),符合題意;f/(x(>0,f(x(單調(diào)遞增;x(<0,f(x(單調(diào)遞減;此時(shí)f(1(=a-1>0,此時(shí)f(x)=ax--(a+1)lnx<ax--2(a+1)(1-<-+,2.(2022·全國(guó)·高考真題)已知函(2)若f(x(在區(qū)間(-1,0(,(0,+∞(各恰有一個(gè)零點(diǎn),求a的取值范圍.所以曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x(2)f(x)=ln(1+x)+f/(x)=+=設(shè)g(x)=ex+a(1-x2(x+a(1-x2(>0,即f/(x)>0所以f(x)在(-1,0)上單調(diào)遞增,f(x)<f(0)=0(x)=ex-2ax>0所以f(x)在(0,+∞)上單調(diào)遞增,f(x)>f(0)=0若a<-1令h(x)=,x>-1,則h/(x)=,x>-1,又e--1>0,f(e--1(≥-+a?=0,x+a(1-x2(設(shè)h(x)=g/(x)=ex-2axhx)=ex-2a>01)=+2a<0,g/(0)=1>0又g(-1)=>0-1,0(,h(x(>h(-1(=-e,又-1<eae-1<0,f(eae-1(<ae-ae=0即f(x)在(-1,0)上有唯一零點(diǎn)所以a<-1,符合題意所以若f(x)在區(qū)間(-1,0),(0,+∞)各恰有一個(gè)零點(diǎn),求a的取值范圍為(-∞,-1)(1)討論f(x)的單調(diào)性;若x∈(0,+∞(,則f/(x(>0,f(x(單調(diào)遞增;當(dāng)0<a<時(shí),若x∈(-∞,ln(2a((,則f/(x(>0,f(x(單調(diào)遞增,若x∈(ln(2a(,0(,則f/(x(<0,f(x(單調(diào)遞減,若x∈(0,+∞(,則f/(x(>0,f(x(單調(diào)遞增;x(≥0,f(x(在R上單調(diào)遞增;f/(x(>0,f(x(單調(diào)遞增,若x∈(0,ln(2a((,則f/(x(<0,f(x(單調(diào)遞減,若x∈(ln(2a(,+∞(,則f/(x(>0,f(x(單調(diào)遞增;而f(-b而f(\a a a-be-b+b-b而函數(shù)在區(qū)間(-∞,0(上單調(diào)遞增,故函數(shù)在區(qū)間(-∞,0(上有一個(gè)零點(diǎn).f(ln(2a((=2a[ln(2a(-1[-a[ln(2a([2+b>2a[ln(2a(-1[-a[ln(2a([2+2a=2aln(2a(-a[ln(2a([2=aln(2a([2-ln(2a([,2,故aln(2a([2-ln(2a([≥0,-1≤2a-1<0,當(dāng)b<0時(shí),構(gòu)造函數(shù)H(x(=ex-x-1,則H/(x(=ex-1,當(dāng)x∈(-∞,0(時(shí),H/(x(<0,H(x(單調(diào)遞減,x(>0,H(x(單調(diào)遞增,f(x(=(x-1(ex-ax2+b≥(x-1((x+1(-ax2+b=(1-a(x2+(b-1(,當(dāng)x>時(shí),(1-a(x2+(b-1(>0,取x0=+1,則f(x0(>0,+1>0,f(ln(2a((=2a[ln(2a(-1[-a[ln(2a([2+b≤2a[ln(2a(-1[-a[ln(2a([2+2a=2aln(2a(-a[ln(2a([2=aln(2a([2-ln(2a([,由于0<a<,0<2a<1,故aln(2a([2-ln(2a([<0,(2)若曲線y=f(x(與直線y=1有且僅有兩個(gè)交點(diǎn),求a的取值范f/(x(==,令f'(x(=0得x=,當(dāng)0<x<時(shí),f/(x(>0,當(dāng)x>時(shí),f/(x(<0,f(x(==1?ax=xa?xlna=alnx?=,設(shè)函數(shù)g(x(=,x(>0,g(x(單調(diào)遞增;在(e,+∞(上g/(x(<0,g(x(單調(diào)遞減;∴g(x(max=g(e(=,所以曲線y=f(x(與直線y=1有且僅有兩個(gè)交點(diǎn),即曲線y=g(x(與直線y=有兩個(gè)交點(diǎn)的充分必要條件是0<<,這即是0<g(a(<g(e(,程alnx=xlna在區(qū)間(0,+∞)內(nèi)有兩個(gè)解.構(gòu)造函數(shù)g(x)=alnx-xlna,x∈(0,+∞),求導(dǎo)數(shù)得g/(x)=-lna=.(x)<由于0<e-<1<,g(e-=-1-e-<0,僅有兩個(gè)交點(diǎn).lnx0=(x-x0(,即y=x-1+lnx0.(x)=0得x=.(x)>0得0<x<,f(x)在區(qū)間(0,內(nèi)單調(diào)遞增,由f/(x)<0得x>,f(x)在區(qū)間,+∞(內(nèi)單調(diào)遞減.-a,a1->5.(2022·全國(guó)·高考真題)已知函數(shù)f(x)=ex-ax和g(x)=ax-lnx有相同的最小值.g(x)=ax-lnx的定義域?yàn)?0,+∞(,而g/(x)=a-=.當(dāng)x<lna時(shí),f/(x)<0,故f(x)在(-∞,lna(上為減函數(shù),當(dāng)x>lna時(shí),f/(x)>0,故f(x)在(lna,+∞(上為增函數(shù),故f(x)min=f(lna(=a-alna.故g(x)min=g=1-ln.因?yàn)閒(x)=ex-ax和g(x)=ax-lnx有相同的最小值,設(shè)g(a(=-lna,a>0,則g/(a(=-=≤0,由(1)可得f(x)=ex-x和g(x)=x-lnx的最小值為1-ln1=1-ln=1.x-x=b的解的個(gè)數(shù)、x-lnx=b的解的個(gè)數(shù).設(shè)S(x(=ex-x-b,S/(x(=ex-1,x(>0,故S(x(在(-∞,0(上為減函數(shù),在(0,+∞(上為增函數(shù),所以S(x(min=S(0(=1-b<0,b-2>0,故u(b(在(1,+∞(上為增函數(shù),故u(b(>u(1(=e-2>0,故S(b(>0,故S(x(=ex-x-b有兩個(gè)不同的零點(diǎn),即ex-x=b的解的個(gè)數(shù)為2.設(shè)T(x(=x-lnx-b,T/(x(=,當(dāng)0<x<1時(shí),T/(x(<0,當(dāng)x>1時(shí),T/(x(>0,故T(x(在(0,1(上為減函數(shù),在(1,+∞(上為增函數(shù),所以T(x(min=T(1(=1-b<0,而T(e-b(=e-b>0,T(eb(=eb-2b>0,T(x(=x-lnx-b有兩個(gè)不同的零點(diǎn)即x-lnx=b的解的個(gè)數(shù)為2.故若存在直線y=b與曲線y=f(x(、y=g(x(有三個(gè)不同的交點(diǎn),設(shè)h(x)=ex+lnx-2x,其中x>0,故h/(x)=ex+-2,設(shè)s(x(=ex-x-1,x>0,則s/(x(=ex-1>0,故s(x(在(0,+∞(上為增函數(shù),故s(x(>s(0(=0即ex>x+1,所以h/(x)>x+-1≥2-1>0,所以h(x)在(0,+∞(上為增函數(shù),而h(1)=e-2>0,h=e-3-<e-3-<0,故h(x(在(0,+∞(上有且只有一個(gè)零點(diǎn)x0,<x0<1且:當(dāng)0<x<x0時(shí),h(x(<0即ex-x<x-lnx即f(x(<g(x(,當(dāng)x>x0(x(>0即ex-x>x-lnx即f(x(>g(x(,因此若存在直線y=b與曲線y=f(x(、y=g(x(有三個(gè)不同的交點(diǎn),故b=f(x0(=g(x0(>1,此時(shí)ex-x=b有兩個(gè)不同的根x1,x0(x1<0<x0),此時(shí)x-lnx=b有兩個(gè)不同的根x0,x4(0<x0<1<x4),x-x1=b,ex-x0=b,x4-lnx4-b=0,x0-lnx0-b=0所以x4-b=lnx4即ex-b=x4即ex-b-(x4-b(-b=0,故x4-b為方程ex-x=b的解,同理x0-b也為方程ex-x=b的解x-x1=b可化為ex=x1+b即x1-ln(x1+b(=0即(x1+b(-ln(x1+b(-b=0,故x1+b為方程x-lnx=b的解,同理x0+b也為方程x-lnx=b的解,所以{x1,x0{={x0-b,x4-b{,而b>1,[方法二]:由(1)知,f(x)=ex-x,g(x)=x-lnx,且f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,且f(x)min=g(x)min=1.①b<1時(shí),此時(shí)f(x)min=g(x)min=1>b,顯然y=b與兩條曲線y=f(x)和y=g(x)②b=1時(shí),此時(shí)f(x)min=g(x)min=1=b,故y=b與兩條曲線y=f(x)和y=g(x)共有2個(gè)交點(diǎn),交點(diǎn)的橫坐標(biāo)分別為0和1;即證明F(x)=f(x)-b有2個(gè)零點(diǎn),F(xiàn)′(x)=f′(x)=ex-1,所以F(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,又因?yàn)镕(-b)=e-b>0,F(xiàn)(0)=1-b<0,F(xiàn)(b)=eb-2b>0,(令t(b)=eb-2b,則t′(b)=eb-2>0,t(b)>t(1)=e-2>0)所以F(x)=f(x)-b在(-∞,0)上存在且只存在1個(gè)零點(diǎn),設(shè)為x1,在(0,+∞)上存在且只存在1個(gè)零點(diǎn),即證明G(x)=g(x)-b有2個(gè)零點(diǎn),G′(x)=g′(x)=1-,又因?yàn)镚(e-b)=e-b>0,G(1(=1-b<0,G(2b)=b-ln2b>0,(令μ(b)=b-ln2b,則μ′(b)=1->0,μ(b)>μ(1)=1-ln2>0)2=x3:因?yàn)镕(x2)=G(x3)=0,所以b=ex-x2=x3-lnx3,若x2=x3x-x2=x2-lnx2,即ex-2x2+lnx2=0,所以只需證明ex-2x+lnx=0在(0,1)上有解即可,即φ(x)=ex-2x+lnx在(0,1)上有零點(diǎn),因?yàn)棣?e--3<0,φ(1)=e-2>0,此時(shí)取b=ex-x0則此時(shí)存在直線y=b,其與兩條曲線y=f(x)和y因?yàn)镕(x1)=F(x2)=F(x0)=0=G(x3)=G(x0)=G(x4)所以F(x1)=G(x0)=F(lnx0),又因?yàn)镕(x)在(-∞,0)上單調(diào)遞減,x1<0,0<x0<1即lnx0<0,所以x1=lnx0,同理,因?yàn)镕(x0)=G(ex)=G(x4),又因?yàn)閑x-2x0+lnx0=0,所以x1+x4=ex+lnx0=2x0,即直線y=b與兩條曲線y=f(x)和y=g(x)從左到右的三個(gè)交點(diǎn)的橫坐標(biāo)成等差數(shù)列.6.(2022·新Ⅰ卷·高考真題)設(shè)函數(shù)f(x)=+lnx(x>0).(ⅱ)若0<a<e,x1<x2<x3,則+<+<-.x(=-+=,故f(x(的減區(qū)間為(0,f(x(的增區(qū)間為,+∞(.i故f(xi(-b=f/(xi((xi-a(,故方程f(x(-b=f/(x((x-a(有3個(gè)不同的根,該方程可整理為-(x-a(--lnx+b=0,設(shè)g(x(=-(x-a(--lnx+b,則g/(x(=-+(-+(x-a(-+=-(x-e((x-a(,故-(e-a(--lne+b<0且-(a-a(--lna+b>0,整理得到:b<+1且b>+lna=f(a(,此時(shí)b-f(a(--1(<+lna(-+=--lna,設(shè)u(a(=--lna,則u/(a(=<0,故u(a(為(e,+∞(上的減函數(shù),故u(a(<--lne=0,故0<b-f(a(<-1(.不妨設(shè)x1<x2<x3,則0<x1<a<x2<e<x3,故-(e-a(--lne+b>0且-(a-a(--lna+b<0,因?yàn)閤1<x2<x3<a<x2<e<x3,又g(x(=1-+-lnx+b,-+-lnx+b=0即為:-t+t2+lnt+b=0即為-(m+1(t+t2+lnt+b=0,記t1=,t2=,t3=,則t1,t2,t3為-(m+1(t+t2+lnt+b=0有三個(gè)不同的根,+t3<-,即證:<t1+t3<-,t3-t1+t3-+<0,t3-2-<,而-(m+1(t1+t+lnt1+b=0且-(m+1(t3+t+lnt3+b=0,故lnt1-lnt3+(t-t(-(m+1((t1-t3(=0,故t1+t3-2-=-×,mt1-t336m(t1+t3(,故即證:-2×lnt1-lnt3mt1-t336m(t1+t3(,k(=-k--2lnk(,φ/(k(>0,72(m+1(記ω(m(=lnm+(m-1((m-13((m2-m+12(,0<72(m+1( 7.(2024·河北邯鄲·模擬預(yù)測(cè))已知函數(shù)f(x(=(lnx+x((ex-(a∈R(.【答案】(1)y=(3e-1(x-2e;則f/(x(=+1((ex-+(lnx+x((ex+,所以f(1(=e-1,f/(1(=3e-1,所以y=f(x(在點(diǎn)(1,f(1((處的切線方程為y-(e-1(=(3e-1((x-1(,即y=(3e-1(x-2e.所以g(x(在(0,+∞(單調(diào)遞增,且g=-ln2+=ln<0,g(1(=1>0,x,設(shè)h(x(=xex(x>0),可得h/(x(=(x+1(ex>0,8.(2024·四川·一模)設(shè)f(x(=ex-x-ax(2)討論f(x(的零點(diǎn)數(shù)量.x-x,f/(x(=(3x2-1(ex-x.注意到ex-x>0,從而f/(x(的正負(fù)只和(3x2-1(有關(guān),從而可作出下表:(-∞,--33(-3,+∞(f/(x(+0-0+f(x(↗e↘-e↗從而f(x(的單調(diào)遞增區(qū)間是(-∞,-,+∞(,單調(diào)遞減區(qū)間是(-,(.當(dāng)a≠0時(shí),注意到所求可以化為x3-x=ln(ax((ax>0(的解的數(shù)量.(-∞,-1(-1(-1,-√3-30+++0--g(x(↗0↗9↘00、31--0+++g(x(0↘-9↗0↗則(g(x(-h(x((/=3x2-1->0,從而g(x(-h(x(單調(diào)遞增,零點(diǎn)若有則至多有一個(gè),1≥-從而g(x1(>0>-1≥h(x1(,設(shè)x2=min{((2≤-2,,從而g(x2(<0<1≤h(x2(,從而在(x2,x1(上必然有一個(gè)零點(diǎn).從而總是有一個(gè)零點(diǎn).(-∞,-1-3(-, 31k+0-0+++k(x(↗7-9↘-9↗1↗其在(0,+∞(上的正負(fù)性和k(x(一樣,從而(g(x(-h(x((先單調(diào)減少后單調(diào)遞增,注意到α3=(α+1(,從而此處g(α(-h(α(=-α-ln(α(-ln(a(,當(dāng)a>b時(shí),g(x(-h(x(在x=α處小于0,在x1=min{x1(<-1<g(x1(,從而g(x(-h(x(在(x1,α(上有一個(gè)零點(diǎn).設(shè)u(x(=lnx-x+1,x>1,則u/(x(=-1<0,所以函數(shù)u(x(在(1,+∞(上單調(diào)遞減,則u(x(=lnx-x+1<u(1(=0,即lnx<x-1,當(dāng)x≥2時(shí),g(x(-h(x(≥3x-x+1-ln(a(=2x+(1-ln(a((,從而在x2=max{x(-h(x(>0,=,綜上a=1,b=-1.所以f(x)=有兩個(gè)不同的實(shí)數(shù)根可轉(zhuǎn)化為:關(guān)于x的方程=m(x≠1,x≠有兩個(gè)不同的實(shí)數(shù)根.設(shè)g(x)=x≠1,x≠,令g/(x)=0得,x=0或x=.x(-∞,0)0 32g/(x(+0---0+g(x)12×-1(1-110.(2023·江蘇南通·一模)已知函數(shù)f(x(=和g(x(=在同一處取得相同的最大值.(1)求實(shí)數(shù)a;(2)設(shè)直線y=b與兩條曲線y=f(x(和y=g(x(共有四個(gè)不同的交點(diǎn),其橫坐標(biāo)分別為x1,x2,x3,x4(x1<x2<x3<x4),證明:x1x4=x2x3.(1)a=1(1)利用導(dǎo)數(shù)分別求f(x(,g(x(的最值點(diǎn),列式求解即可;(2)構(gòu)建F(x(=f(x(-g(x(,利用同構(gòu)思想分析f(x(,g(x(的大小關(guān)系,進(jìn)而可得直線y=b與曲線y=f(x(和y=g(x(的交點(diǎn),再結(jié)合G(x(=的單調(diào)性分析即可證出.可得f(x(在x=1處取到最大值f(1(=;可得f(x(在x=1處取到最小值f(1(=,不合題意;綜上所述:a>0,f(x(在x=1處取到最大值f(1(=.0<x<e1-a;令g/(x(<0,解得x>e1-a;可得g(x(在x=e1-a處取到最大值g(e1-a(=ea-1;>-a可得直線y=b與曲線y=f(x(至多有兩個(gè)交點(diǎn);若直線y=b與兩條曲線y=f(x(和y=g(x(共有四個(gè)不同的交點(diǎn),則0<b<1,此時(shí)直線y=b與曲線y=f(x(、y=g(x(均有兩個(gè)交點(diǎn),構(gòu)建F(x(=f(x(-g(x(=---(x>0(,構(gòu)建G(x(==f(x(,且e>0,則F(x(=e[G(x(-G(lnex([(x>0(,構(gòu)建φ(x(=x-lnex=x-lnx-1(x>0(,則φ/(x(=1-=,則φ(x(在(1,+∞(上單調(diào)遞增,在(0,1(上單調(diào)遞減,可得φ(x(=x-lnex≥φ(1(=0,-G(lnex([=0,所以f(1(=g(1(;當(dāng)0<x<1時(shí),lnex<x<1,且G(x(在(-∞,1(上單調(diào)遞增,則G(lnex(<G(x(,可得F(x(=e[G(x(-G(lnex([>0,所以f(x(>g(x(;當(dāng)x>1時(shí),1<lnex<x,且G(x(在(1,+∞(上單調(diào)遞減,則G(lnex(>G(x(,可得F(x(=e[G(x(-G(lnex([<0,所以f(x(<g(x(;當(dāng)0<x<1時(shí),f(x(>g(x(;當(dāng)x>1時(shí),f(x(<g(x(.為x2,x4,且0<x1<x2<1<x3<x4,(=G(lnex2(,因?yàn)镚(x(在(-∞,1(上單調(diào)遞增,且x1<1,lnex2<1,則x1=lnex2,可得ex-1=x2所以==f(x1(=b;(=G(lnex4(,因?yàn)镚(x(在(1,+∞(上單調(diào)遞增,且x3>1,lnex4>1,則x3=lnex4,可得ex-1=x4,所以==f(x3(=b;=x2x3.a≤blnb,a≤lnbelnb,構(gòu)建f(x(=xex;alnea≤blnb,構(gòu)建f(x(=xlnx;③a+lna≤lnb+ln(lnb(,構(gòu)建f(x(=x+lnx.①≤,構(gòu)建f(x(=;②≤,構(gòu)建f(x(=;③a-lna≤lnb-ln(lnb(,構(gòu)建f(x(=x-lnx.a±lnea≤b±lnb,構(gòu)建f(x(=x±l1.(2024·廣東佛山·二模)已知f(x(=-e2x+4ex-ax-5.x-3x-5,f/(x(=-e2x+4ex-3=-(ex-1((ex-3(,f/(x(<0,xf/(x(>0,故f(x(的單調(diào)遞減區(qū)間為(-∞,0(、(ln3,+∞(,單調(diào)遞增區(qū)間為(0,ln3(;(2)f/(x(=-e2x+4ex-a,令t=ex,即f/(x(=-t2+4t-a,則f(x1(+f(x2(+x1+x2=-e2x1+4ex1-ax1-5-e2x2+4ex2-ax2-5+x1+x2=-(t+t(+4(t1+t2(-(a-1((lnt1+lnt2(-10=-[(t1+t2(2-2t1t2[+4(t1+t2(-(a-1(lnt1t2-10=-(16-2a(+16-(a-1(lna-10=a-(a-1(lna-2,要證f(x1(+f(x2(+x1+x2<0,即證a-(a-1(lna-2<0(0<a<4(,令g(x(=x-(x-1(lnx-2(0<x<4(,則g(x(=1-(lnx+=-lnx,令h(x(=-lnx(0<x<4(,則h(x(=--<0,則g(x(在(0,4(上單調(diào)遞減,又g(1(=-ln1=1,g(2(=-ln2<0,=-lnx0=0,即=lnx0,<0,則g(x(≤g(x0(=x0-(x0-1(lnx0-2=x0-(x0-1(×-2=x0+-3,又x0=x0+-3<0,即g(x(<0,即f(x1(+f(x2(+x1+x2<0.2.已知f(x(=(x+1(ekx,k≠0.f(m+n(+1>f(m(+f(n(.故f(x(在(0,f(0((處的切線斜率為f(0(=(0+2(e0=2,而f(0(=(0+1(e0=1,所以f(x(在(0,f(0((處的切線方程為y-1=2(x-0),即2x-y+1=0.(2)由題意得g(x(=f(x(=(kx+k+1(ekx,則g(x(=(k2x+k2+2k(ekx,令g(x(=(k2x+k2+2k(ekx<0,即k2x+k2+2k<0,∴x<-1-,令g(x(=(k2x+k2+2k(ekx>0,即k2x+k2+2k>0,∴x>-1-,>0時(shí),g(x(=f(x(在(0,+∞(上單調(diào)遞增,而g(0(=f(0(=k+1>0,即f(x(>0在(0,+∞(上恒成立,故f(x(在(0,+∞(上單調(diào)遞增,設(shè)h(x)=f(x+m)-f(x),則h(x)=f(x+m)-f(x),所以h(x)=f(x+m)-f(x)在(0,+∞(上單調(diào)遞增,而n∈(0,+∞(,則h(n)>h(0),即f(n+m)-f(n)>f(m)-f(0),而f(0(=1,故f(n+m)-f(n)>f(m)-1,即f(m+n(+1>f(m(+f(n(.(2)若函數(shù)f(x(有兩個(gè)極值點(diǎn)x1,x2(x1<x2(,求2f(x1(-f(x2(的最小值.思路詳解:(1)因?yàn)閒(x(=lnx+x2-2ax,x>0,所以f/(x)=+2x-2a=,3=,x4=3<x4,當(dāng)0<x<x3或x>x4時(shí),g(x)>0,即f/(x)>0;其中x3=,x4=.3此時(shí)a>2,x1+x2=a>0,x1?x2=1、1=2x+1,2ax2=2x+1、則2f(x1(-f(x2(=2(lnx1+x-2ax1(-(lnx2+x-2ax2(=2(lnx1+x-2x-1(-(lnx2+x-2x-1(=-2x+2lnx1-lnx2+x-1=x-2(222+2ln22-lnx2-1=x-2-lnx-2ln2-1t(=t-t-lnt-2ln2-1,則g/(t(=1+22-=(2t-2(t-1(,t(>0,則g(t(單調(diào)遞增,所以g(t(min=g(1(=-1+ln2,所以2f(x1(-f(x2(的最小值為-1+ln2.,使得f(x1(=f(x2(x1x2(>0.(2)不等式轉(zhuǎn)化為證明x1<<ea-1,即證明f(x2(<f,構(gòu)造函數(shù)g(x(=f(x(-fx∈【詳解】(1)f/(x(=a-1-lnx,當(dāng)0<x<ea-1時(shí),f/(x(>0,f(x(單調(diào)遞增;當(dāng)x>ea-1x(<0,f(x(單調(diào)遞減.所以f(x)max=f(ea-1(=ea-1≤1,<x2<ea-1<x2<ea,要證f/(所以只需證f(x1(<f,即f(x2(<f.令g(x(=f(x(-fx∈(ea-1,ea(,則g(ea-1(=0,g/(x(=.當(dāng)x>ea-1時(shí),a-1-lnx<0,x2-e2a-2>0,則g/(x(<0,所以g(x(在(ea-1,ea(上單調(diào)遞減,則g(x(<g(ea-1(=0.所以f(x1(<f.5.(2024·山西·模擬預(yù)測(cè))已知函數(shù)f(x)=2(x1<x2(是函數(shù)f(x)的兩個(gè)極值點(diǎn),求證:f(x1(-f(x2(<(a-(x1-x2(.(3)化簡(jiǎn)f(x1(-f(x2(=ln-,將f(x1(-f(x2(<(a-(x1-x2(轉(zhuǎn)化成ln<,再構(gòu)造函數(shù)h(t)=lnt-,通過討論其單調(diào)性即可求證.x(<0,x(==,x(>0,所以f(x)<.因?yàn)閒(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2(,,所以f(x1(-f(x2(=(lnx1+x-x1+2(-(lnx2+x-x2+2(=ln+(x-x(-(x1-x2(=ln+-(x1-x2(=ln-,所以要證f(x1(-f(x2(<(a-(x1-x2(,即證ln-<(a-(x1-x2(,令h(t)=lnt-,則h/(t(=>0,所以原不等式f(x1(-f(x2(<(a-(x1-x2(成立.6.已知函數(shù)f(x(=ln(x+1(-x2-ax-1(a∈R(.f(x1(-f(x2(≥M,求M的最大值;f/<0.f(x1(-f(x2([max=f(x(max-f(x(min=【詳解】(1)當(dāng)a=-2時(shí),f(x(=ln(x+1(-x2+2x-1,則f(x(的定義域?yàn)?-1,+∞(,且f/(x(=-2x+2=,f/(x(>0,所以f(x(在[0,1[上單調(diào)遞增,所以f(x(在[0,1[上的最大值為f(1(=ln2,最小值為f(0(=-1,由題意知M≤[f(x1(-f(x2([max=f(x(max-f(x(min=ln2+1,(2)證明:由題意知f(m(=ln(m+1(-m2-am-1=0,f(n(=ln(n+1(-n2-an-1=0,所以f(m(-f(n(=ln-(m+n((m-n(-a(m-n(=0,所以a=-ln-(m+n(.因?yàn)閒/(x(=-2x-a,所以f/=-(m+n(-a=-(m+n(--ln+(m+n(令g(t(=+lnt(0<t<1(,則g/(t(=+=,所以g(t(在(0,1(上單調(diào)遞增,零點(diǎn)問題是高考的熱點(diǎn)問題,隱零點(diǎn)的代換與估計(jì)問題是函數(shù)f(x(=xex?f(-lnx(=-?x2ex+lnx=0所以在解決形如?x+lnx=0,這些常見的代換都是隱零點(diǎn)中常見的操作.∵f(x)=aex-1-lnx+lna,∴f/(x)=aex-1-,且a>0.x-1+>0,f(x(min=f(1(=1,∴f(x(≥1成立.-1<1,1-1-1((a-1)<0,)時(shí)f/(x)<0x0-1=,∴l(xiāng)na+x0-1=-lnx0,因此f(x)min=f(x0)=aex-1-lnx0+lna=+lna+x0-1+lna≥2lna-1+2?x0=2lna+1>1,當(dāng)0<a<1時(shí),f(1)=a+lna<a<1,∴f(1)<1,f(x)≥1不是恒成立.由f(x)≥1得aex-1-lnx+lna≥1,即elna+x-1+lna+x-1≥lnx+x,而lnx+x=elnx+lnx,所以elna+x-1+lna+x-1≥elnx+lnx.令h(m)=em+m,則h/(m)=em+1>0,所以h(m)在R上單調(diào)遞增.lna+x-1+lna+x-1≥elnx+lnx,可知h(lna+x-1)≥h(lnx),所以lna+x-1≥lnx,所以lna≥(lnx-x+1)max.令F(x)=lnx-x+1,則F(x)=-1=.所以a的取值范圍為a≥1.由題意知a>0,x>0,令aex-1=t,所以lna+x-1=lnt,所以lna=lnt-x+1.于是f(x)=aex-1-lnx+lna=t-lnx+lnt-x+1.由于f(x)≥1,t-lnx+lnt-x+1≥1?t+lnt≥x+lnx,而y=x+lnx在x∈(0,+∞)時(shí)為增函數(shù),故t≥x,即aex-1≥x,分離參數(shù)后有a≥.下面證明當(dāng)a≥1時(shí),f(x)≥1恒成立.令T(a)=aex-1-lnx+lna,只需證當(dāng)a≥1時(shí),T(a)≥1[T(a)]min=T(1)=ex-1-lnx.x≥x+1,lnx≤x-1,得ex-1≥x,-lnx≥1-x.上面兩個(gè)不等式兩邊相加可得ex-1-lnx≥1,故a≥1時(shí),f(x)≥1恒成立.當(dāng)0<a<1時(shí),因?yàn)閒(1)=a+lna<1,顯然不滿足f(x)≥1恒成立.所以a的取值范圍為a≥1.則f(x(=-a=,x-lnx-x-1,x>0,gI(x(=(x+1(ex--1,令h(x(=(x+1(ex--1,則hI(x(=(x+2(ex+>0,(x>0(,即h(x(在(0,+∞)上單調(diào)遞增,h=e,h(e(=(e+1(ee--1>0,故g(x(min=g(x0(=x0ex0-ln-x0-1=0即g(x(≥0,即xex≥lnx+x+1,則lnx+x+1≤xex.3.已知函數(shù)f(x)=ln(ax),a>0,若f(x)≤(x-1)ex-a,求a的取值范圍.x-a-f(x)=(x-1)ex-a-lnx-lna,x>0,依題意,h(x)≥0恒成立,求導(dǎo)得hI(x)=xex-a-,x>0,令y=hI(x)=xex-a-,yI=(x+1)ex-a+>0,又hI=e-2<0,hI(a+1)=(a=0,即x0ex0-a=成立,h(x)min=h(x0(=(x0-1(ex-a-lnx0-lna,ex0-a=,得ex0-a=,a=x0+2lnx0,于是得h(x0(=-lnx0-ln(x0+2lnx0(,于是得函數(shù)φ(x)=-lnx-ln(x+2lnx)0+2lnx0>0時(shí),由(1)中l(wèi)nx≤x-1知,-lnx0≥1-x0,有-ln(x0+2lnx0(≥1-(x0+2lnx0(,h(x0(=-lnx0-ln(x0+2lnx0(≥-lnx0+1-(x0+2lnx0(=-3lnx0-x0+1≥-3(x0-1(-x0+1=,≥0,因此滿足f(x)≤(x-1)ex-a,又a=x0+2lnx0,y=x+2lnx(x)=a-=(x>0),(2)證明:由(1)知g(x)=x2-x-xlnx,g/(x)=2x-2-lnx,令h(x)=2x-2-lnx,h/(x)=2-=(x>0),g(x0(=x-x0-x0lnx0,2(x0-1(,所以g(x0(=x-x0-2x0(x0-1)=-(x0-2+,<.(x)=lnx+2(1)=2f(1)=-2=令h(x)=3lnx-x+2,則h/(x)=<0恒成立.00-x0+2=0,則lnx0=,00(x)<0值范圍.(2)(-∞,2-ln2[①當(dāng)a≤0時(shí),x2-a>0,則f/(x(>0,故f(x(單調(diào)遞增.調(diào)遞增.min=f(a(=a-alna=,即a-alna=1.令m(x(=x-xlnx,則m/(x(=-lnx,令m/(x(=-lnx>0,解得0<x<1,由題可得x2-lnx-(x-1(2ex+e2≥m在,2上恒成立.令h(x(=x2-lnx-(x-1(2ex+e2,x∈,2,則h/(x(=(x+1((x-1(-ex(,令t(x(=-ex,則t/(x(=--ex<0,可得t(x(在(0,+∞(上單調(diào)遞減,x0,-lnx0=x0,易知h(2(=2-ln2,h(x0(=x-lnx0-(x0-1(2ex0+e2=-+2+e2,由于-<-<-,故2-ln2<+e2<h(x0(,因此h(x)min=2-ln2,故m≤2-ln2,即m的取值范圍為(-∞,2-ln2[.(1)求f(x(的極值;(2)證明:xg(x(+2>exf(x(-.(2)構(gòu)造h(x(=xg(x(+2-exf(x(+=xlnx+2-x+(x>0(,求出其單調(diào)性進(jìn)而求得最小值為f/(x(<0,所以f(x(在(-∞,1(單調(diào)遞增,在(1,+∞(單調(diào)遞減,(2)解:令h(x(=xg(x(+2-exf(x(+=xlnx+2-x+(x>0(,則r/(x(=+>0在x>0上恒成立,所以r(x(在(0,+∞(上單調(diào)遞增,又r(1(=ln1-=-2<0,r(e(=lne-=1->0,=0,h(x(min=h(x0(=x0lnx0+2-x0+=x0?+2-x0+=2-x0+(x0∈(1,e((,則m/(x(=-1-<0在(1,e(上恒成立,所以m(x(在(1,e(上單調(diào)遞減,所以m(x(>m(e(=2-e+>0,所以h(x(min=h(x0(=2-x0+>0,所以xg(x(+2>exf(x(-.(2)構(gòu)造一元差函數(shù)F(x)=f(x0+x)-f(x0-x);(3)確定函數(shù)F(x)的單調(diào)性;1.(2022·全國(guó)·統(tǒng)考高考真題)已知函數(shù)f(x(=-lnx+x-a.f/(x)=令f/(x(=0,得x=1(x)<0,f(x)單調(diào)遞減(x)>0,f(x)單調(diào)遞增f(x)≥f(1)=e+1-a,所以a的取值范圍為(-∞,e+1]由f(x(≥0得:e-lnx+x+x-lnx-a≥0令t=x-lnx,t≥1,則f(t(=et+t-a≥0即a≤et+t故g(t(=et+t在區(qū)間[1,+∞(上是增函數(shù)所以a的取值范圍為(-∞,e+1]∈(0,1),即證f(x1(>f又因?yàn)閒(x1(=f(x2(,故只需證f(x2(>f即證-lnx+x-即證--2lnx-x->0下面證明x>1時(shí),->0,lnx-x-<0設(shè)g(x)=-,x>1,則g/(x)=-x+-=1-x-e1-=(1--e=-e設(shè)φ(x(=(x>1(,φ/(x(=-x=ex>01所以-e>0,所以g/(x)>0即g(x)>g(1)=0,所以->0令h(x)=lnx-x-x>1h/(x)=-1+==<0即h(x)<h(1)=0,所以lnx-x-<0;綜上,--2lnx-x->0,所以x1x2<1.由題意得:f(x(=+ln-a令t=>1,則f(t(=t+lnt-a,f'(t(=1+>0所以g(t(=t+lnt-a在(1,+∞(上單調(diào)遞增,故g(t(=0只有1個(gè)解又因?yàn)閒(x(=+ln-a有兩個(gè)零點(diǎn)x1,x2,故t==兩邊取對(duì)數(shù)得:x1-lnx1=x2下證x1x2<(*(因?yàn)閤1x2<?lnx1-lnx2<?ln<-不妨設(shè)t=>1,則只需證2lnt<t-構(gòu)造h(t(=2lnt-t+,t>1,則h'(t(=-1-1-2<0故h(t(=2lnt-t+在(1,+∞(上單調(diào)遞減故h(t(<h(1(=0,即2lnt<t-得證2.已知函數(shù)f(x(=lnx-ax+1,a∈R.由f(x(=lnx-ax+1≤0,得a≥.x(=.從而g(x)max=g(e(=.ln(ex(+ln(ex2(=eax+ax.設(shè)F(x(=x+ex,則eln(ex(+ln(ex2(=eax+ax等價(jià)于F(ln(ex2((=F(ax(.由h/(x(>0則h(x(在(0,、e(上單調(diào)遞增,在(、e,+∞(上單調(diào)遞減,方程f(x2(=eax-ex2有兩個(gè)不同的正實(shí)根x1,x2,不妨設(shè)x1<x2,<x<x1<e<x2,0<a<.e(t-1)2t(t+1)2>0,(t-1)2t(t+1)2>0,則G(t(在(1,+∞(上單調(diào)遞增.2(x2-x1(x1+x2x1+x22(x2-x1(x1+x2x1+x2<lnx2-lnx1,則<.2因?yàn)榉匠蘤(x2(=eax-ex2有兩個(gè)不同的正實(shí)根x1,x2,x2-x12=lnx2x2-x12=lnx2-lnx1a.x2-x1lnx2-lnx1x2-x1lnx2-lnx1則x1x2>e3.(2024·全國(guó)·模擬預(yù)測(cè))已知函數(shù)f(x(=1-lnx-(a∈R(.(1)求f(x(的單調(diào)區(qū)間;x(=,因?yàn)閒(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專題15 函數(shù)及其基本性質(zhì)(單調(diào)性、奇偶性、周期性、對(duì)稱性)小題綜合(學(xué)生卷)2025年高考復(fù)習(xí)之近十年真題數(shù)學(xué)分項(xiàng)匯編
- 煤礦管道施工合同范本
- Unit 4 Bobby's House Lesson4(教學(xué)設(shè)計(jì))-2024-2025學(xué)年北師大版(三起)英語(yǔ)四年級(jí)上冊(cè)
- 2025年新型電視監(jiān)控系統(tǒng)項(xiàng)目可行性研究報(bào)告
- 《鋼鐵是怎樣煉成的》教學(xué)設(shè)計(jì)2023-2024學(xué)年統(tǒng)編版語(yǔ)文八年級(jí)下冊(cè)
- 2025年游泳池設(shè)備租賃及專業(yè)維護(hù)合同
- 錳礦租賃合同范本
- 2025年中國(guó)2-甲基苯硫酚行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- CO自動(dòng)監(jiān)測(cè)儀項(xiàng)目效益評(píng)估報(bào)告
- 2025年中國(guó)滑雪裝備行業(yè)市場(chǎng)調(diào)研及未來(lái)發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 英語(yǔ)-廣東省上進(jìn)聯(lián)考領(lǐng)航高中聯(lián)盟2025屆高三下學(xué)期開學(xué)考試題和答案
- 2025年春季新北師大版生物七年級(jí)下冊(cè)全冊(cè)教學(xué)課件
- 培訓(xùn)課件:律師客戶溝通技巧
- 2025年春新外研版(三起)英語(yǔ)三年級(jí)下冊(cè)課件 Unit5第1課時(shí)Startup
- 2025年春新外研版(三起)英語(yǔ)三年級(jí)下冊(cè)課件 Unit1第2課時(shí)Speedup
- 生物新教材培訓(xùn)的心得體會(huì)
- 中醫(yī)預(yù)防流感知識(shí)講座
- 上海市2024年中考英語(yǔ)試題及答案
- 臨床患者體位管理
- 砂光機(jī)培訓(xùn)課件
- 米酒的制作流程
評(píng)論
0/150
提交評(píng)論