




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
DNV
WHENTRUSTMATTERS
RISKASSESSMENTOFBATTERYENERGY
STORAGEFACILITYSITES
Mainauthors:
MarisaPierce
VijayRaghunathan
Editors:
StephenJonesCarolLiffman
CarrieKaplan
MichaelKleinberg
WHITEPAPER
Riskassessmentofbatteryenergystoragefacilitysites
-2-
CONTENTS
Executivesummary03
1.Definingriskintheenergystorageindustry10
1.1Currentenergystorageindustrypositioning11
1.1.1Industrialsectorcomparison12
1.1.2Vehiclecomparison13
1.2Theconceptof'risk'13
1.3Identifyingandmanagingrisk14
1.3.1Step1:Hazardidentification14
1.3.2Step2:Consequenceanalysis14
1.3.3Step3:Frequencyanalysis14
1.3.4Riskassessmentandmitigation15
2.Li-ionbatteryfailureriskandmitigation17
2.1Commonfailurescenariosofli-ionbatteries18
2.2Consequenceanalysis19
2.2.1Toxicimpacts19
2.2.2Fireradiation20
2.2.3Flammability20
2.2.4Overpressureimpacts20
2.3Frequencyanalysis21
2.4Riskassessment22
2.5Safeguardsandbestpractices24
2.6Layersofprotection27
3.Conclusions30
4.References32
Riskassessmentofbatteryenergystoragefacilitysites
-3-
LISTOFFIGURES
Figure1-1Deathsperunitofelectricityproductionbyenergysource[4]12
Figure1-2Genericriskmatrix13
Figure1-3Riskassessmentprogression14
Figure1-4Sampleriskmatrixexercise15
Figure2-1Comparisonofcommonriskscenarios27
Figure2-2Bowtieoverview28
Figure2-3Simplifiedthreadpathwayportionofthebowtie(leftsideofFigure2-2)28
Figure2-4Simplifiedconsequencepathwayportionofbowtie(rightsideofFigure2-2)29
Figure3-1ComparisonofriskofBESSwithoutsafeguardsinplace(A)andwithsafeguardsinplace(B)31
LISTOFTABLES
Table2-1CommonLi-ionbatteryfailuresandsafeguards18
Table2-2MaximumdownwinddistanceofCOat8.5feetheightreleasepoint(feetfromsource)19
Table2-3Firehazards-radiationlevelsat3.3feetheightabovegroundlevel(feetfromsource)20
Table2-4LFLat8.5feetheightabovegroundlevel(feetfromsource)20
Table2-5Commonfailurecausesandfrequencyoffailure(CCPS,Ref.[22])21
Table2-6ComparisonofexamplescenariolikelihoodoffatalitywithUKHSEriskcriteria
(withoutsafeguards)24
Table2-7Commonsafeguardsandprobabilityoffailureondemand24
Table2-8ComparisonofexamplescenariolikelihoodoffatalitywithUKHSEriskcriteria
(withsafeguards)26
Table2-9Safeguardorbarriereffectivenesscategories27
EXECUTIVESUMMARY
3
Riskassessmentofbatteryenergystoragefacilitysites
EXECUTIVESUMMARY
Assessingriskforbatteryenergystoragesystems
Interestinenergystoragehassurgedinrecentyears.
AstheworldimplementstheParisAgreement(fromthe
UnitedNationsClimateChangeConference(COP21)heldinParis,Francein2015),utilitiesandenergyprovidersmustcontinuetoreduceemissionssafelyandequitably.BatteryEnergyStorageSystems1(BESS)havegrowninpopularitybecauseoftheirnumerousbenefitstoelectricutilitiesandtheircustomers.
BESSstorelargeamountsofenergygeneratedby
renewable(typicallysolarandwind)andotherpower
generationtechnologies,allowingincreasingrenewable
energygenerationandcostsavingsovertime.Lithium-ion(Li-ion)batteriesrevolutionizedhowwepowerconsumer
productssuchasportableelectronicsandelectricvehicles.BESShelpmanageinstantaneoussupplyanddemandon
thepowersystem,replacefossil-fuel-poweredpeakerplants(whichoperateinfrequently,onlyduringpeaksystem
demand),andserveasbackuppowersourcesintheeventofequipmentfailures.
FailuresofbatterieswithinBESSarerare.
FailurecausesforLi-ionbatteriesincludeelectricalfailures,mechanicalfailure,extremeenvironment,thermalfailure,andhumanerror.
Aswithothertechnologies,BESSincludeapplicationsandrisksthatmeritthoughtfulconsideration.Li-ionbatteries
commonlydeployedinBESScontainmaterialsthatcanburnorexplodewhenoverheatedorotherwiseabused,anda
seriesoffires(particularlyfromconsumerproducts)haveincreasedconcernsoverthesafetyandefficacyofthesesystems.
Untilrecently,publiclyavailabledataonbatteryincidents
waslimited.DNV,however,conductednumerousstudiestounderstandbetterhowLi-ionbatteriesfailandwhich
safeguardsandbestpracticesreducethelikelihoodofincidentsandtheseverityofconsequences.
1Batteryenergystoragesystemsaresometimesconfusedwith,forexample,awarehouseinwhichbatterieswouldbestored.Thispaperdiscussessystemsthatstoreelectricity,oftenusingbatteries.
-5-
Riskassessmentofbatteryenergystoragefacilitysites
-6-
DNVconducteddestructivetestingonhundredsofbatterycellswithcapacitiesrangingfrom2Amp-hours(Ah)to
300Ahfrom20differentmanufacturers,aswellasdozensofmedium-andlarge-scaletestsandnumerousfireandfailureinvestigations.Destructivetestingisatypeoftesting
methodologywheretheprimarygoalistointentionallydamageordestroyacomponent,material,orproductto
evaluateitsperformance,durability,andfailurecharacteristicsunderextremeconditions.InLi-ionbatterytesting,
destructivetestinginvolvessubjectingthecellstoconditions
suchasovercharging,over-discharging,short-circuiting,
mechanicalabuse,andextremetemperatures.Thesetestshelpusunderstandbatterybehaviorduringfiresandotherfailureconditions.Thedataderivedismeanttoguide
manufacturers,systemdesigners,safetyexperts,and
permittingauthoritiesindeterminingthenecessaryfireandexplosionprotectionforaBESSfacility.
Further,weevaluateddatafromtheoilandgas,utility,and
petrochemicalindustrieswhenassessingscenarioswhen
BESSandotherfacilitiesoperateoutsideintendedconditions(potentiallyleadingtofires).DNVusesthesesourcesand
statisticalanalysisandriskassessmenttoolstoestimatetheriskofcatastrophicbatteryfailures,includingtoxicgas
releases,fires,andexplosions.However,wedidnotanalyzefailuresordeterminefailureratesbasedonknownbattery
failureincidents.Instead,weofferaquantitativeassessmentofthelikelihoodofBESSfailureandtheimpactonworkersandthegeneralpublicwithandwithoutsafeguards.WealsocomparedtheBESSsectorwithotherindustriesand
applicationsfamiliartothepublictodeepentheconversationofbatteryBESSsafetyacrossindustries.
ThefollowingareDNV’sfindingsinresponsetocommonlyaskedquestions.
?WhyareLi-ionbatteriesbecomingsopopular?
Amongvariousenergystorageoptions,Li-ionbatteriesstandoutbecauseoftheirhighenergydensityanddecreasingcosts.
Despiteincidentsleadingtoscrutiny,Li-ionbatteriescontinuetobefavoredfortheirversatilityinapplicationsrangingfrompersonalelectronicstoelectricvehiclestostationaryBESS,whichservetobalancesupplyanddemandontheelectricpowersystem.
Variouscountries,especiallytheUnitedStates,activelypursuestrategiestoenhanceenergystoragedeployment.Theseincludeaddressingcostcompetitiveness,regulatoryframeworks,andindustryacceptance,withstateslikeCalifornia,Texas,andNewYorkleadinginBESSdeployment.
?WhyandhowoftendoLi-ionbatteriesinBESSfail?
FailuresofbatterieswithinBESSarerare.FailurecausesforLi-ionbatteriesincludeelectricalfailures(e.g.,batterymanagementsystemfailurethatresultsinover-chargingorover-dischargingthebattery),mechanicalfailure(e.g.,defectivematerialsusedinmanufacturing),extremeenvironment(e.g.,batteryexposedtohighertemperaturesthanitisdesignedfor),thermalfailure
(e.g.,coolingsystemfailure),andhumanerror(e.g.,improperinstallation).Typesoffailuresalsovary–failurecouldmeanthebatterylosessomeofitsabilitytostoreenergy,couldmeanthebatterystopsworking,orcouldmeanthebatterycatchesfire.Thisreport
focusesonrisksrelatedtoLi-ionbatteryfires.
Estimatingthelikelihoodoffailurerequiresadualapproachusingqualitativeandquantitativemeans.Qualitativeanalysisrelieson
theexpertiseofsubjectmatterexperts.Incontrast,quantitativeanalysisutilizeshistoricalreliabilitydataorincidentdatabasesto
determineprecisefailurerates.DNVuseddatabasesfromvariousindustries,suchasnuclear,utility,oilandgas,andpetrochemical
sectors,andstatisticaltoolstoestimatefailurelikelihoodsquantitatively.TheresultingordersofmagnitudeoftheseBESScomponentfailureratesareoncein10yearstooncein100years.Itshouldbenotedthatthesearefailureratesoftheequipmentandnotinjuryorfatalityratesassociatedwiththefailures.
Riskassessmentofbatteryenergystoragefacilitysites
-7-
?WhataretheconsequencesandseverityofLi-ionbatteryfailures?
Consequenceanalysisevaluatesfailurescenarios’severity,employingqualitativeexpertiseandquantitativemodelingtools.
Byusingdatafromourbatteryfiretestsanddatafrombatterycellmanufacturers,weassessedthetoxic,flammability,andthermal
impactsofLi-ionBESSfailuresonsurroundingcommunities.Ourmodellingincludedthefollowinggases:hydrogen(H2),carbon
monoxide(CO),carbondioxide(CO2),methane,andotherhydrocarbonsinlowerconcentrations(ethane,ethene,andpropane).
DNVmodeledanexampleBESSsitecontaining40cabinetsof2megawatt-hours(MWh)eachthatcanstore/discharge80MWhofelectricalenergy.Ourmodellingindicatedthatnoimpactcapableofcausingafatalityorseverepropertydamageoccurredmore
thanabout50feetfromthecenteroftheBESScabinets.Ouranalysisincludedrelevantatmosphericconditionsfortheexamplesite.
?Whataretherisks?
Riskisafunctionoftwocomponents:likelihood(alsoreferredtoasprobabilityorfrequency)oftheeventoccurringandseverity(alsoreferredtoasimpact).Asillustratedintheequationbelow:
Risk=LikelihoodxSeverity
AcommonmetricusedtoreportriskinthehydrocarbonindustryiscalledIndividualRisk,definedastherisktoapersoninthe
vicinityofahazardintermsofthenatureoftheinjury,thelikelihoodofinjury,andthetimeperiodoverwhichitoccurs.Anexampleofhowitiscommonlyreportedis“oneinjury/fatalityevery10,000years.”DNVmodeledtherisktobothworkersandthegeneral
public.BasedonourestimatesforthesampleBESSfacility,factoringinstandardsafetymeasures,thereisanestimatedriskofone
workerfatalityoccurringevery100,000years(equivalentto10-5fatalitiesperyear)andonefatalityinvolvingamemberofthepublicevery1,000,000years(equivalentto10-6fatalitiesperyear).TheUnitedKingdomHealthandSafetyExecutive(UKHSE)has
establishedcriteriafor“broadlyacceptablerisk”forbothworkersandmembersofthepublicforscenariosthatleadtoafatalitynomorethanonceinamillionyears.Scenarioswithfatalitiesareconsidered“tolerable”risksforworkersiftheyoccurnomorethan
oncein1,000yearsand“acceptable”forthepublicifthescenariosoccurnomorethanoncein10,000years.Perthesecriteria,theriskfromtheBESSexamplesitewemodelledisbroadlyacceptableforthepublicandtolerableforworkers.Also,whencomparingtheriskofBESSfailureswithinthecontextofeventsthatsocietyisalreadycomfortablewith,therisksarelow.
Commonrisksinperspective
Riskiestindustry
(transportation&warehousing)
1in1,000
1in10,000
1in100,000
1in1,000,000
1in10,000,000
Solorockclimbing(5hrs.perweek)HeartdiseaseSmoking
Accidentathome
Trafficaccident(driving10hrs.perweek)
Li-ionBESSsite
Fatallightning
strike
Riskassessmentofbatteryenergystoragefacilitysites
-8-
?HowcantherisksofLi-ionbatteriesbemitigated?
Whenrisksaretolerableorworse,itisbestpracticetoidentifyandinstalladditionalsafeguardstoreducetheriskfurther.
SafeguardsincorporatedintoBESSlessenthelikelihoodandseverityofbatteryfailureevents.Examplesofcommonindustry-
standardsafeguardsthatDNVconsideredinthisstudyincludeheatingventilationandairconditioningunits(HVAC)whichcontrolthetemperatureandhumidityinbatterycabinets,batterymanagementsystems(BMS),fusesandcircuitbreakers,andactivefire
suppression.TheNationalFireProtectionAssociation(NFPA)listsotherfireprotectionrequirementssuchasexplosioncontrolandseparationdistancesfromthepublic.Safeguardsthatbothpreventfailuresandmitigatetheseverityoffailurescanberepresentedinbowtievisualizations2,asimplifiedexampleofwhichisshownbelow.Inabowtievisualization,foranidentifiedhazardandevent(forexample“aBESSfacilitycatchesfire”),thevisualizationidentifiesthreatsontheleftandconsequencesontheright.
Barrierswhichpreventthreatsfromcausingtheeventareshownontheleft,andbarriersthatreducetheimpactoftheevent,ifitdoesoccurdespitethepreventivemeasures,areshowntotherightofthebowtie.Managingthehealthofbarriersiscriticalforensuringtheirperformanceintheeventofanemergency.
Bowtieoverview
Hazard
Lossof
containment
event
Mitigative
controlmeasures
orbarriers
Preventcontrol
measuresor
barriers
Consequence
Threat
?HowdoBESSfailureriskscomparetootherindustries?
TheriskofBESSfailureiscomparabletoorevenlowerthantherisksassociatedwitheverydayactivitiessuchasdrivingorbeing
apassengerinacar.Forexample,workingatorlivingnearaBESSislessriskythanbeinginacarorworkinginindustriessuchas
agriculture/forestry/fishing/huntingortransportation/warehousingwhenconsideringthefatalityrate(numberofannualfatalities
per100,000workers).In2023,therewereapproximately1,000fatalitiesrelatedtocarandlighttruckcrashesintheUnitedStates[1].
Withapproximately243milliondrivers[2],theratewas17fatalitiesper100,000driversperyear(thoughcrasheskilldrivers,
passengers,occupantsofothercars,andthoseoutsidecarssuchaspedestriansandbicyclists)or12fatalitiesper100,000
populationperyear.Forevery100,000workersintheUSin2022,therewere19fatalitiesintheagriculture/forestry/fishingandhuntingindustry(417totalfatalities)and14fatalitiesinthetransportationandwarehousingindustry(1,053totalfatalities)[3].
WhilethefatalityratepernumberofworkersisunknownforBESSsites,itispossibletoestimatethefatalityrateperyearandperunitofpowergenerationandcompareitwiththefatalityratesofotherindustries.Withinthepowergenerationsector,thefatalityrateperunitofenergy(orterawatthours)forBESSsitesisconsiderablylowerperunitofelectricityproductioncomparedtoothersources
suchascoal,oil,ornaturalgas(seefigureonpage9).ThefatalityrateperyearisdiscussedinmoredetailinSection1.1.
2Thename“bowtie”isusedbecauseacompletedvisualizationoftenlookslikeabowtie.
Riskassessmentofbatteryenergystoragefacilitysites
-9-
Deathsperunityofelectricityproductionbyenergysource[4]
30
DeathsperTerawatthourelectricity
25
20
15
10
5
0
25
18
4.6
2.8
1.3
Coal
Oil
Biomass
Gas
0.07
HydropowerLi-ionbatteryenergystorage
0.04Wind
0.03
Nuclear
0.02Solar
Energysector
*ThefatalityratefordriversintheU.S.isbasedonthenumberoffatalitiesreportedbytheU.S.NationalHighwayandTrafficSafetyAdministrationfortheyear2023pernumberoflicenseddriversintheU.S.in2023whichwasestimatedtobe243.35milliondriverspertheConsumerAffairsJournalofPublicResearch[2].
?HowdoBESSfacilitiesremainsafe?
ToensureBESSremainsatanacceptablerisklevel,itsownersandoperatorsshouldfollowdesignstandardsandbestpractices,regularlymaintainthesystem’sequipment(aswellassafetysystemsandrelatedequipment),trainpersonnel,andcommunicatewithlocalemergencyrespondersonthestoragesystem’shazards.
1
DEFININGRISKINTHE
ENERGYSTORAGEINDUSTRY
11
12
13
13
14
14
14
14
15
1.1Currentenergystorageindustrypositioning
1.1.1Industrialsectorcomparison
1.1.2Vehiclecomparison
1.2Theconceptof'risk'
1.3Identifyingandmanagingrisk
1.3.1Step1:Hazardidentification
1.3.2Step2:Consequenceanalysis
1.3.3Step3:Frequencyanalysis
1.3.4Riskassessmentandmitigation
3
Riskassessmentofbatteryenergystoragefacilitysites
1.DEFININGRISKINTHEENERGYSTORAGEINDUSTRY
Thefollowingsectionsdescribetheenergystoragemarketandintroduceriskasacombinationofhowsevereanincidentisandhowlikelyitistooccur.
US.However,ofthosevalues,intheUSandabroad,
approximately96%ofthecapacityisrepresentedbylarge
pumpedhydrostorage.Whileelectrochemicalbatteries
representnearly57%oftheprojectsinstalled,theycontributejust1,800MWtoworldwidecapacityand787MWtoUS
capacity.Ofthissubsection,Li-ionchemistriesaccountfor77%(1,390MW)ofinstallationsworldwideandnearly85%(667MW)ofUSelectrochemicalinstallations[8].
Assuch,BESSusingLi-ionbatteriesisthefocusofthispaper.Li-ionbatteries’high-energydensityanddecreasingcosts
supporttheiruseinapplicationsrangingfromportable
personalelectronicstotransportationtoutility-scalecapacitysupportandbeyond.IncidentswithLi-ionbatteriesoverthelasttenyears,includingtheBoeing787Dreamlinerfiresin2013[9],theUnionPacifictraincarexplosionin2017[10]
and,morerecently,utility-scaleBESSfires[11],anddozensofe-bikefiresinNewYorkCity[12][13][14][15],haveled
toscrutinyofLi-ionbatteries.Itisclearthataquantitative
assessmentofrisk,bothforthelikelihoodandtheimpactoffailure,iscriticaltoprovidesufficientmitigationmeasures.
Whiletheseandsimilarhigh-profilefailureshavereceivedmediaattention,reputablemanufacturersclaimhundredsofthousandsandevenmillionsofhoursofoperationwithnosignificantfailures.
ThetotalnumberofdeployedBESSandtheirfailureratesarebeingtrackedinincidentdatabases.Thesedatabases,alongwiththeresultsofbatteryburntests,recordedreliabilitydataforanalogoussystems,consequencemodellingandsome
statisticalanalysis,makeitpossibletoestimatetherisksofBESS.
1.1Currentenergystorageindustrypositioning
Batteryenergystoragesystemsareanincreasinglyattractiveoptionforutilityoperatorsandenergyproviderstoimprovethereliabilityandefficiencyoftheelectricgridwhile
reducingemissions.Variouscountries,includingtheUnitedStates(US),haveestablishedstrategiestoincreasetheuseof
energystoragebyaddressingcostcompetitiveness,
performanceandsafety,marketandpricingregulations,andindustryacceptance[5].IndividualUSstateshaveadopted
renewableportfoliostandards(RPS)andzeronetemissions
standards.TheyalsohavedevelopedincentiveprogramsthatsupporttheincreasedBESSdeploymentsofenergystoragegoals.Thirty-ninestateshaveanRPSorvoluntaryclean
energygoals,and19statesandWashington,D.C.passed
legislationtogroworexpandtheirrenewableorcleanenergytargets.Californiaisaleaderinthisspacewithover6,600MWofinstalledBESSenergystoragecapacity[6].Manystates
areexpandingtheirgoals.Forexample,NewYorkaimsfor
atargetof1,500MWofstorageforthestateby2025and
3,000MWby2030,withinthecontextofanoverall6,000MWenergystorageroadmap[7].TexasisanotherleaderinBESSinstallations.
Theenergystoragemarketoffersvariousoptions,including
pumpedhydro,compressed-airenergystorageflywheels,
basedontheUSDepartmentofEnergy(DOE)energystoragedatabase[8](whichisself-reportedandresearchedanddoesnotmaintainpacewithallnewinstallations),thereare
174,000MWofenergystoragesystemsofalltypesinstalledandoperationalworldwide,with24,500MWinstalledinthe
andelectrochemicalbatteriesdeployedinBESS.Currently,
-11-
Riskassessmentofbatteryenergystoragefacilitysites
-12-
1.1.1INDUSTRIALSECTORCOMPARISON
Figure1-1isbasedondatafromOurWorldData[4]forall
ofthesectorsshown,exceptfortheBESSsector,whichwasseparatelycalculatedandaddedalongsidetheothersectors’data.Thefigureshowsthemortalityratefromaccidentsandairpollutionperunitofelectricityworldwideindifferent
sectors.Thefigureshowsfatalitiesperterawatt-hour3of
electricityproducedin2022perindustrysector.ThemortalityrateintheBESSsectorisbasedon4totalfatalitiesattributedtoBESSworldwidetodate,accordingtoadatabaserunby
UnderwritersLaboratoriesSolutions[16].Asof2023,roughly97,000MWhofelectricitystoragecapacityisinstalled
globally[17][18].Basedonthosevalues,theBESSsector’s
mortalityrateisapproximately0.074fatalitiesperterawatt-hourforLi-ionbatteryBESSfacilities.Withinthepower
generationsector,thefatalityrateperunitofenergy
(orterawatthours)forBESSsitesisconsiderablylowerper
unitofelectricityproductioncomparedtoothersourcessuchascoal,oil,ornaturalgas.However,itisworthnotingthatthedeathratesincludedinthisgraphaccountforindirectdeathsfromairpollutionaswellaswork-relatedincidentsanddirectimpactonsociety.Thedatafromupstream-relatedactivitiessuchasmining,fabrication,anddeliveryofthelithium-ion
energystoragesystemisnotavailable.Therefore,indirectimpactsforLi-ionstoragewerenotincludedaspartofthiscomparison.
DeathsperTerawatthourelectricity
30
25
20
15
10
5
0
25
18
4.6
2.8
1.3
Coal
Oil
Biomass
Gas
0.07
HydropowerLi-ionbatteryenergystorage
0.04Wind
0.03
Nuclear
0.02Solar
Energysector
FIGURE1-1
Deathsperunitofelectricityproductionbyenergysource[4]
3Aterawatt-hour(TWh)isequaltoonetrillionwattsofpowerusedforonehour.
OneTWhisequaltoonemillionMWh,roughlytheelectricityusedby80,000averageUShouseholdseachyear.
4Inourcalculations,DNVassumedthatallinstalledBESSwereutilized70%ofthetimeperyearwhichroughlyequatesto60TWhofenergyproducedfromlithium-ionbasedBESSsince2008.ThedataforthetotalcapacityofBESSinstallationsfrom2008-2020isfromRef.[18];datafrom2021-2023isfromRef.[17];2024valueswereestimatedbasedon2023data.
Riskassessmentofbatteryenergystoragefacilitysites
-13-
1.1.2VEHICLECOMPARISON
EVfiresreceivemuchpublicity,whetherthefiresresultfromcrashes,occurduringcharging,orhappenwhilethevehicleisparkedbutnotbeingcharged.AsdeploymentsofEVs
increaseexponentially,increasingfireincidentsmayerodeconfidenceinthetechnology.Ofcourse,conventional
gasolineordiesel-fueledvehiclesalsocatchfiredueto
crashes,duringrefueling,andwhileparked,butthat
technologyhasbeenaroundforwelloveracenturyandsohasbeennormalized.
DNVisnotawareofpeer-reviewedcomparisonsonrates
offireamongEVsandconventionallyfueledvehicles.One
widelyreferencedstudy[19]claimsEVshaveamuchlower
rateoffirethanconventionalvehicles,whichmaywellbetrue.
However,thestudyusesrecentsalesdatatoder
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 亞馬遜雨傘訂購(gòu)合同范本
- 農(nóng)村住房修建合同范例
- 廠區(qū)工人雇傭合同范本
- 企業(yè)采購(gòu)紅酒合同范本
- 吧臺(tái)主理人合同范本
- 品牌供貨合作合同范例
- 前臺(tái)課程顧問(wèn)合同范本
- 壓手續(xù)不押車合同范本
- 北京二手房服務(wù)合同范本
- 危險(xiǎn)建筑拆除合同范本
- 統(tǒng)編版語(yǔ)文四年級(jí)下冊(cè)第六單元教材解讀解讀與集體備課課件
- 2024年新蘇教版六年級(jí)下冊(cè)科學(xué)全冊(cè)知識(shí)點(diǎn)(精編版)
- 華為十六字方針解析以崗定級(jí)-以級(jí)定薪-人崗匹配、易崗易薪
- 食堂遇特殊天氣應(yīng)急預(yù)案
- 礦山機(jī)電專業(yè)課程標(biāo)準(zhǔn)范本
- 食品風(fēng)味化學(xué)(第二版) 課件 第8、9章 風(fēng)味物質(zhì)的提取與分析、食品中風(fēng)味的釋放和穩(wěn)定化
- 自考《組織行為學(xué)》全
- 變電站建設(shè)工程造價(jià)影響因素分析及控制策略研究
- 【銅版畫(huà)“飛塵”技法實(shí)踐研究4900字(論文)】
- 人教版道德與法治五年級(jí)下冊(cè)全冊(cè)課件(完整版)
- 角磨機(jī)施工方案
評(píng)論
0/150
提交評(píng)論