




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
EnhancingSecurity,Resilience,and
SafetyofSystemswith
GenerativeAITableofSidebar:GenAImodels4GenAIUseCases9IndividualApplications9Self-Awareness10Anomalydetection11Autonomy12Adaptability12Predictivemaintenance13Faultmanagement14Fleet16Swarmintelligence17Swarmcoordination19Communicationresilience21Consensus22Human23Missionplanningandexecution24Human-machineteaming25Meta-learning26Datalabelingsynthesis27Cybersecurity28Malware29Intrusiondetection:31Integratingthreatintelligence33Policymanagement33ThreatSimulation:34Softwaresupplychainvisibility34Challenges34Cost35Compute36Adaptation36Ethical/Regulatory36Alignment36Privacy36Accuracy3737securityissues3838Glossary41Rapidadvancesautonomoussystemsedgeroboticsunlockedunprecedented
opportunitiesinindustriesfrommanufacturingtransportationhealthcareandexploration.
Increasingcomplexityandconnectivityhaveintroducednewchallengesinensuringsecurity,
resilience,andsafety.Asedgerobotsintegrateourdailylivesandcriticalinfrastructures,itis
imperativethatwedevelopinnovativethatcanthesetrustworthiness
andreliabilitynewlevels.ThiswhitepaperexploresthetransformativepotentialofgenerativeAI(GenAI)enhancethe
security,resilience,andsafetyofautonomoussystemsandedgerobots.canusethese
cutting-edgetechnologiesmeettheuniquedistributeddynamicchallengesofedge
robotics,unlocklevelsofintelligence,adaptability,androbustness.GenAImodelsproducenewcontentbyanalyzingpatternsinadataset.Theyderivecharacteristic
probabilitydistributionsandapplythesecreatenewdatapatternsthatareconsistentwiththe
original“real”dataset.EarliergenerationsofdiscriminativeAImodelsappliedconditionalprobabilitiesoutcomesforpreviouslyunseendata.Theapproachisversatileandwell-suitedawiderange
ofproblems,includingclassificationsandregressions.Theyexcelatdelineatingthedecision
boundariesthatdifferentiatebetweenvariousclassesorcategorieswithinthedataset.Thegrowingranksofgenerativetechniquesincludethosebasedontransformersandthe
resultinglargelanguagemodels(LLMs),GenerativeAdversarialNetworks(GANs),Autoencoders(VAEs),GenerativeFlowModelsandGenerativeDiffusionModels(GDM).
ThesehaveallexcitingavenuesofAIresearch—withapplicationsdroneswarms
andintrusiondetection,physicalsecurity,semanticcommunication,andnetwo1TheTechnologyInnovationInstitute’sSecureResearchCenter(TII-SSRC,AbuUAE,https://www.tii.ae/secure-systems)isapplyGenAIitsworkextendingZero
Trustarchitectures(developedforinformationsecurity)everyaspectofinformationsecurityin
cyber-physicalsystems.Thus,SSRCconsidershowGenAIcanhelpguaranteesecurity,resilience,andforswarms,swarmsofswarms,autonomousterrestrialmarinevehicles,commandsystems,human/droneinteractionsandparticularlyinareaswhereGenAIoutperformstraditionalapproaches.Examples?Individualapplications:healthmonitoring,stateestimation,predictivemaintenance,
anomalydetection,self-healing,navigation,andemergencylandings.
?Fleetapplications:Swarmcoordination,intelligence,collectivedecision-making.
?Human/Droneinteractions:communicationresilience,missionplanning,human-
computerinteraction.?Cybersecurityandresilience:Intrusiondetection,malwareclassification,threatsimulation.ThispaperwillfocusondronesSSRCisdoingsomuchworkinthisarea.Whatwe
learnfromdronescanbeappliedmoreautonomousandcyber-physicalsystemsin
general,includingcars,robots,embeddedandsmartcities.Bythesametoken,
lessonslearnedintheseareascanbefoldedSSRC’sresearch.approachallowsorganizationsmoveawayfromphysicaldevicemanagementapproaches
thatrequireemployeescarrymultiplephones.1M.“UnleashingthePowerEdge-CloudGenerativeinMobileNetworks:AAIGCServices.”arXiv,2023.doi:10.48550/arXiv.2303.16129Sidebar:GenAImodelsAsurveyofspecificgenerativeAImodelingtechniques,withtheirstrengthslimitationsas
applieddronesafety,security,andresilience.PopularexcitementovergenerativeAImodelsbeendrivenbyhighlypublicizedlikeChatGPT,whichcreateauthoritative-soundingresponsestextpromptsusingspecially
trainedLLMs.LargeLanguageareAIsystemstrainedonvasttextdatasets.TheyuseDeepLearning
techniques,particularlyastructureknownasaTransformer,“understand”andhuman-liketextbasedonthepatternslearned.LLMsanalyzetherelationshipscontextsinthedata.Theyuseavarietyoftechniquesbuildsimplifiedrepresentations
ofthedata,allowingthemmakeassociationsandcorrelationsbetweenoriginalelements.Thesemodelsletthemcomposeresponsesthatcanmimichumanwritingstylescoverdiversetopics.VisuallikeDALL-EandStableDiffusion,compileimagesfromtext
andimageprompts.LLMsarewidelyused,widelyuseful,increatingcontent,code,translations,summaries,
syntheticdata,structureunstructuredfromtexts,documents,images,andpromptdata.Transformermodelsandtheservicesbuiltonthem—likeOpenAI’sGoogle’sGemini,
andAnthropic’sClaude—attractedwidespreadattention,thankstheirimpressiveability
createarticulate-seemingresponseshumanprompts.These,andotherdomain-specific
LLMsandSmallLanguageModels(SMLs),showpromiseforsupportinganalysis,research,
anddevelopmentimprovedronesafety,securityandresilience.ParallelingtheseveryvisibleAIdevelopments,however,hasbeenalmostadecadeofprogress
onnewclassesofGenerativeAImodelscouldautomateandrepresentation-building.
Whilegenerativeapplicationsattractthemostattentions,thesenewmodelsaredriving
advancesinanalyzingdataandinteractingwiththeworldus.OthergenerativeAI
models—GenerativeAdversarialNetworks,VariationalAutoencoders,GenerativeDiffusion
Models,NormalizingFlowModels—thoughrelativelyunknown,makesubstantial
contributionsdronesecurity,safety,andresilience.TransformerModels:Introducedin2017translatebetweenandtexts,
TransformerModelsatcapturinglong-rangedependenciescorrelationswithin
unstructureddata2Transformersleverageanovel“attentionmechanism”learnthe
connectionsbetweenwordshelpcreateembeddingsautomatically.Priortechniquesrequired
translatingrawtextintoavectorrepresentationusingaseparatemodel.Transformerscanbuild
complexrepresentationsandlearnintricateconnectionsthroughlayeredarchitecture,
manner.,allowingresearchersprocesslargebodiesofunlabeledtextdeveloplarge
languagemodelsbillionsofparameters.Subsequentinnovationssupporteddocument
summarization,composingquestion/answerassociationsacrosslargedatasets,code
generation,in-depthanalysis,intrusiondetection,malwaredetection,translatingcontrol
systeminstructionsacrossroboticarms.Thekeyadvantageisdistillingcontextfrom
complexdatasets.Challengesincludehallucination,longertrainingtime,slowerinference-
building,heaviercomputationrequirements,andlargermodelcomparedother
techniques.2Vaswani“AttentionAllNeed.”arXiv,Aug.2023.doi:10.48550/arXiv.1706.03762.GenerativeAdversarialNetworks(GANs):Theseweredevelopedin2014createrealistic
syntheticnumbers,faces,andanimalimage3GANspittwonetworksagainstother:
oneisrewardedforgeneratingrealisticcontent,andthesecondisrewardedfordetecting
fakecontent.thiscompetition,thegeneratorimprovesitscreateoutputscanfoolthediscriminator.GANsarewidelyusedincontentgeneration.Sincethefirstversions
weredesignedworkwithimages,researchersarenowfindingcreativewaystranslatesuchascodeornetworklogs,intoimagessuitableforprocessing.GANsaregoodfor
realisticsyntheticdatasetsthatcanbeusedimproveautonomoussystemsandcybersecurity
algorithms.They,too,however,sufferfromfailureslikecollapseorcatastrophic3J.Goodfellow“GenerativeAdversarialNetworks.”arXiv,Jun.2014.doi:10.48550/arXiv.1406.2661.VariationalAutoencoder(VAE):VAEswereintroducedin2014improveinferencesdrawn
fromacontinuouslyvaryingdatastream.4Thetechniquehelpsfindefficientwaysrepresent
dataandbecompressdataordetectanomaliesthreats.TrainingVAEsprocess
involvesteachingasetofencodersanddecoderstranslaterawdataintoanintermediatelatent
spacewithadifferentprobabilitydistribution.canbeusedindependentlyapplicationsanomalydetection,designingencodingschemes,dataaugmentation,generation.addition,theyareoftenusedpre-structuredataforotheralgorithms,GANs,improvetheirresults.GenerativeDiffusionModel(GDF):emergedin2015improvelearning,sampling,
inferences,andevaluationsthatwereinformedbynon-equilibriumthermodynamicsmodeling5
Thetechniqueaddsnoiseasampleanimage)andautomatesthedenoising
processrevealthedata’sstructure.Slightvariationsleaddatasets.arewidelyusedinimagegenerationandcanimprovesignalclassificationvariousdroneusecases.However,thetechniquerequireshighersamplingdemands
amorecomplexarchitectureGANsandNormalizingFlow(NFMs):Thesewereintroducedbyresearchersmakecomplex
datasimplerworkwith6Thesemodelstakeeasy-to-understanddistributions,likeanormalbell
curve,andtransformthemstepbystep.Eachstepisreversible,meaningwealwaysgothestartifneeded.Thisprocess,calleda“”movesfromasimplebeginninganend4D.andM.Welling,“Auto-EncodingVariationalBayes.”arXiv,Dec.2022.10.48550/arXiv.1312.6114.5Ling,et"Diffusionmodels:Acomprehensivemethodsandapplications."ACMComputingSurveys56.4(2023):1-39./doi/10.1145/3626235
6Ivan,SimonJDPrince,MarcusA.Brubaker."Normalizingflows:introductionandreviewcurrentmethods."IEEEtransactionsonpatternanalysisand
intelligence43.11(2020):3964-3979./abstract/document/9089305/authorsresemblesthecomplicatedtargetdataset.Bydoingthis,itispossiblestudyandusethedata
moreeffectively.NFMshavebeenusedgeneratehandwrittennumbers,images,etc.Newer
usecasesincludeenhancedclassificationencodingschemes.Thetrainingprocessamodelthattransformstheprobabilitydistributionofadatasetacomplex,fully
reversibledistribution.NFMscan,however,requirehighercomputationandtrainingtimesthan
techniqueslikeGANsVAEs.ThefollowingfiguresummarizesthemainTechniquestheirapplicationsthefield
ofZeroTrustforautonomoussystems.GenAIUseTheproliferationofdrone-technologyhasbroughtchallengesspanbetweendomains
—individual,fleet,humancontrol,cybersecurity.Theirgrowthandcomplexitydemand
constantinnovationredoubletheirtrustworthinessandreliability.Thefollowingapplications—whetherderivedfromUnmannedAerialVehicle(UAV)anddrone
researchorimportedfromotherdomains—importantimplicationsforthefutureofUAVsand
otherautonomoussystems.too,thatmanyoftheseareearly-stageprojects,includedgiveaflavorwhatGenAItoolsmightaccomplishastechniquesevolve.本報告來源于三個皮匠報告站(),由用戶Id:673421下載,文檔Id:490694,下載日期:2025-01-23GenAIshowstremendouspotentialforimprovingZeroTrustframeworksenhancesecurity,
resilience,andsafetyinindividualautonomoussystems,suchasdrones,self-drivingcars,
robots,andembeddedsystems.Usecasesunderinvestigationincludeboostingself-
awareness,anomalydetection,autonomousdriving,predictivemaintenance,faultmanagement,
self-healing,andlandingsafely.Self-AwarenessOpportunity:Efficientlytranslatenoisy,blurry,andinconsistentdataunderstandthedrone's
currentstate—e.g.,compensatingformotionblurwhiletryingdetectobstacles.
Thefoundationofdronehealthisaccuratelycapturingandofitscurrentstate—
includingtheconditionofitscurrenthardware,itsapplications,itsphysicallocation,securityposture.theworld,thiscanmessy,asvideofeedsmotionblur,datajitters,inertialguidancelosecalibration,andnoiseorgapsdegradeinternaldata.Stateestimationiscrucialautonomousnavigationanddecision-making,andrawdatastreams
mustbeaccuratelycorrelatedwithposition,velocity,andorientation.7GenerativeAIcanhelpfill
inmissingdataandfusefrommultiplesourcesimprovestateestimation.8InnovationsGenAIalgorithmslikeGANs,VAEs,andtraditionalMLalgorithmslikeLSTMfillingaps,preservingvehiclefaultdetection,predictivemaintenance,managementandsafe-landingprotocols.Forexample,innovativeapproachescanmissingandmakeiteasierfusestreamscreateamoreaccuratestate
assessment9helpcorrelatedatawithacousticanalysis,10andidentifymechanicalissue11Researcherstechniquesforgeneratingestimated-
statevariablesusingConditionalGANsforindividualdronesdroneswarms.127T.D.Barfoot,Stateestimationforrobotics.CambridgeUniversityPress,2017.8Guangyuan,NguyenVanHuynh,HongyangDinhThaiHoang,DusitNiyato,KunZhu,JiawenKang,ZehuiJamalipour,andDongInKim.“GenerativeUnmannedVehicleSwarms:Challenges,ApplicationsandOpportunities.”arXiv,February28,/10.48550/arXiv.2402.18062.
9Chai,andZ.approachstateestimationgenerativeadversarialnetwork,"inIEEEInternationalConferenceonMan(SMC),2019,2248-/document/891458510Wang,Vinogradov,“ImprovingtheperformanceconvolutionalhistoryensembleforunsupervisedearlydetectionwithacousticemissionsignalsSci.,(5)(2023),p.3136,10.3390/APP1305313611Zheng,Farahat,andC.Gupta,“GenerativeAdversarialNetworksforFailurePrediction.”arXiv,04,2019.Accessed:Mar.15,2024.[Online].Available:/abs/1910.0203412He,C.X.Tian,andW.Zeng,"AtwofoldSiamesenetworkforreal-timetracking,"inProceedingstheIEEEconferenceoncomputervisionpattern
2018,pp.4834-4843./document/8578606AnomalydetectionOpportunity:Improveanalysisofdronesensordataidentifyabnormalconditions.
Moreaccurate,multi-dimensionalsystem-staterecordscanalsohelpidentifyanomaliesrelevant
dronehealth.Forexample,VAEscanimprovefaultdetectionisolation.Theycanidentifythewarningsignsofstressinsystems,prioritizepredictiveschedules.Typically,machine-learningclassificationalgorithmstrainedonclasses
(suchastagged“faulty”faulty”).onclasses,suchasdata,isoften
scarceinpublicdatasetsandtherealworld.thesecases,GenerativeAdversarialNetworks
(GANs)canbevaluablesynthesizingtheseclasses—making“faulty”datathatlooks
conditions.addition,researchersareexploringhowcouldhelpbettercontextualizeoperatenewenvironments.13Forexample,DriveLLMcombinesLLMtraditionalautonomousnavigationalgorithmssupportbetterreasoningdecision-makingwhenrespondingedgecases.14Researchers
foundthemethodcouldimproveproactivedecision-makingunexpectedcircumstances.
Anotherapplication,TypeFly,enhancescommunicationbetweenhumansanddronesthrougha
naturallanguageinterface15.Suchlargelanguagemodelsmay,however,manifestsurfacebias,inaccuracies,and
hallucinationissuesthatrequireadditionalsafeguards.Similarly,MicrosoftResearchdiscusses
theiradvancementsinintegratingwithroboticsmakerobotcontrolintuitive
throughnaturallanguage.They'veenabledunderstandexecutetasksin
physicalenvironments,whichfacilitateseasierhuman-robotinteractionwithouttheneedfor
complexprogrammingknowledge.Theteamhasdevelopeddesignprinciplesfor
languagemodelsroboticstasks(involvingspecialpromptingstructureshigh-level
APIs),andtheyhavedemonstratedhowcanhandletasksoperatingdronesrobotarmsthroughuser-friendlycommandsfeedback.Thedevelopersemphasizethe
importanceofsafetyandsimulationtestingbeforereal-worldapplication16AdaptabilityOpportunity:Improvetranslationofautonomoussystemssoftwarerunacrossdifferenthardwaremakes,models,andconfigurations.Autonomoussystemcontrollersmustbetrainedforaspecificmodelconfiguration.Thiscan
createchallengeswhenupgradingindividualcomponentsoradoptingnewmodels.RTXisarobot
controlthattranslatecontrolpoliciesmanagedifferentroboticarmswithoutthecontrolalgorithmsforthelatesthardware.sometests,leveragingtheexperienceofcontrollers,producedcontrolpoliciestheoutperformedthebestcontrolscustom-builtforan
individuala1713Lei,surveyonlargelanguagemodelautonomousagents."FrontiersComputerScience18.6(2024):1-26./article/10.1007/s11704-024-40231-114“DriveLLM:ChartingthePathTowardFullAutonomousDrivingWithLargeLanguageModels,”IEEETransactionsIntelligentVehicles,vol.pp.1450–Jan.2024,doi:10.1109/TIV.2023.3327715.15Chen,Guojun,XiaojingYu,Zhong."TypeFly:FlyingwithLargeLanguageModel."arXivpreprintarXiv:2312.14950(2023)./pdf/2312.14950
16Vemprala,Sai,et"Chatgptforrobotics:Designandmodelabilities."arXivarXiv:2306.17582(2023)./abs/2306.17582
17X.-Collaborational.,“OpenX-Embodiment:RoboticDatasetsandRT-XarXiv,Dec.17,2023.10.48550/arXiv.2310.08864.EarlyLLMs,likeGPT3.5,weretrainedonlargebodiesoftextscrapedfromtheInternet.These
modelslackedreal-worldexperiencethatcouldreflecthowvariousconfigurationsofrobotsotherautonomoussystemsmakeandexecutedecisions.Researchintoroboticaffordances
exploreshowconstrainrobotmodelactionsthatarefeasibleandappropriateforcapabilities.18ThisprovidesaframeworkforguidingLLMdevelopmentbasedonmorecomplete
knowledgeofanoperationorprocedure.Atthesametime,thefunctiontranslateshigh-levelknowledgeintoexecutionbyaparticularrobotmodelinaspecifictargetenvironment.PredictivemaintenanceOpportunity:Predictthependingbreakdownofdronecomponentsoptimizemaintenance,repair,part-replacementschedules.Properlyandanalyzed,thedrone’ssensoroperationaldatarevealmechanicalproblemsbeforebreakdownsoccur.Predictivealgorithmsmaintenanceandrepair
crewsestablishregularschedules,prioritizemaintenance,andstayaheadofpartsinventories.
advancenoticeandplanning,evenmajorrepairsandreplacementscanbeperformedduring
routineservice.Theprobabilitiesofcostlybreakdownsand,worse,catastrophicfailuressharply.Partscanbereplacedjust-before-needed,withservicelifecalculatedasafunctioninstalled-partquality,servicetime,andoperationalprofile—slashingthecostsofreplacing
perfectlysoundonafixedschedule.TraditionalMLalgorithmsoftenlieattheheartofpredictivemaintenance.Forexample,metrics
likeRemainingUsefulLife(RUL)HealthIndicatorscanidentifymotoranomalies.But
syntheticdatageneratedbyGANsandotherGenAIalgorithmscanimprovethealgorithms’
performance.MultipleMLtechniques,includingGenAIalgorithms,canbecombinedimprovefaultandpredictivemaintenanceworkflow19Forexample,techniquesbeenappliedacousticsignalsfrommachineryidentifyandpredictfaultsnotidentifiedbyothermethods.20
GANshavealsobeengeneratesyntheticmonitoring-datasetshelpotheralgorithmsimprovefailure-predictionandoptimizemaintenanceschedules.21GAN-FP,genetic
adversarialnetworksforfailureprediction,specializeingenerating,balancing,andtrainingdataimproveperformanceofotherMLalgorithms22.FaultmanagementOpportunity:Identifyfaults,makedynamicadjustments,andeffectasafelandingwhenrequired.18M.Ahn“DoICan,ISay:GroundingLanguageinRoboticAffordances.”arXiv,16,2022.Accessed:Mar.22024.[Online].Available:/abs/2204.0169119Z.Mianal.,“Aliteraturereviewoffaultensemblelearning,”EngineeringApplicationsofArtificialIntelligence,vol.Jan.2024,10.1016/j.engappai.2023.107357.Wang,VinogradovImprovingperformanceofconvolutionalhistory-stateensembleunsupervisedearlyfaultdetectionwithacousticemissionsignals
Sci.,(5)(2023),p.3136,10.3390/APP13053136H.Wang,J.Zhao,andX.“AMaintenance-predictionMethodforAircraftusingGenerativeAdversarialNetworks,”inIEEE5thInternational
onComputerandCommunications(ICCC),Dec.2019,pp.225–doi:10.1109/ICCC47050.2019.9064184.
Zheng,Farahat,andC.Gupta,“GenerativeAdversarialNetworksforFailurePrediction.”arXiv,04,2019.Accessed:Mar.15,2024.[Online].Available:
/abs/1910.02034GenAImodelscantransformdataforotherMLimprovefaultdetectioninautonomous
systems.Forexample,VAEscanhelpcompressoperationaldatarepresentationsforlongshort-termmemorynetworks(LSTN),atypeofrecurrentneural
netwo23Spatio-temporaltransformercancapturetrendsanddimensionsacross
differenttimescalesimprovebatterydiagnosisfailureprognosis,enhancingpredictive
maintenanceforUAVs.Forexample,thesystemcanspotsubtlechangesinvisibleearlierMLtechniques)thatsignalimpendingbatteryfailureasmuchas24hours
beforethebatteries.24GANshavebeenusedgeneratetrainingsamplesandbuildinferencenetworksforaircraft-
enginemonitoringimprovefailurepredictionsofotherMLalgorithms.25
ResearchershavecombinedVAEsandLSTMsupportcontinuouslearningfromvehiclesensor
data,generatingsyntheticdataforwiderrangesoffaultscenarios.BytrainingotherMLalgorithms
onthisofsyntheticdata,Sadhuetachievedaccuracyindetectingfaultsaccuracyinclassifyingthem.Demandsforcomputingpowerrelativelyslowexecutionspeedaretopconcernswhen
runningthesekindsofalgorithmsonlow-costhardware.Oneisportthecomputations
whicharemorepower-efficientthanGPUs.ThisishowSadhuetal.achievedaspeedup(athalfthepowerconsumption)forVAE-LSTMfaultdetectionalgorith26
VAEscanalsobeusedtrainmodelsthatidentifynormaloperation.Usingthistechnique,Dhakl
etal.achieveda95.6%accuracyindetectingdeviationsindicativeoffaultsandanomaliesrepresentedinthetrainingset.27Whenaproblemarisesinadroneoritscommunicationsnetwork,thedronemustlandsafelyavoidsecondarydamage.thisMonteCarloalgorithmshavebeencalculate“targetlevelsofsafety”(levelsofacceptablerisk)forvariouslandingzone28
Techniqueslikethiscouldbecombinedwithtransformersmakecontext-awaredecisionswhen
afaultforcesaUAVsystemselectanappropriatelandingzone.thefuture,itmayalsobepossibleGenAItechniquestransformersletself-healinresponsehardwarefailures,softwarebugs,ornetworkdisruption.Forexample,
Khlaisamniangetal.proposedaforusingdetectanomalies,generate
code,debugit,andcreatereportsoncomputersystems.29Althoughstillinitsearlystages,this
worksuggestsdirectionsforfutureresearchonotherautonomoussystems.23Han,A.L.Ellefsen,F.T.Holmeset,H.Zhang,“FaultDetectionWithLSTM-BasedVariationalAutoencoderMaritimeComponents,”IEEESensorsvol.19,pp.2190321912,2021,doi:10.1109/JSEN.2021.3105226.24J.Zhao,Feng,J.Wang,Lian,M.Ouyang,andF.Burke,"Batteryfaultdiagnosisandfailureprognosisforelectricvehiclesspatio-temporaltransformernetworks,"
AppliedEnergy,vol.25H.Wang,J.Zhao,andX.“AMaintenance-predictionMethodforAircraftusingGenerativeAdversarialNetworks,”inIEEE5thInternational
onComputerandCommunications(ICCC),Dec.2019,pp.225–doi:10.1109/ICCC47050.2019.9064184.26Sadhu,andD.Pompili,“On-BoardDeep-Learning-BasedUnmannedAerialFaultCauseDetectionandClassificationviaFPGAs,”IEEETransactionsvol.no.4,pp.33193331,2023,doi:10.1109/TRO.2023.3269380.27R.Dhakal,C.Bosma,Chaudhary,andN.Kandel,"UAVfaultandanomalydetectionusingautoencoders,"inProceedingsIEEE/AIAADigitalAvionicsSystems
Conference.IEEE,2023,pp.1-8.28Tong,Gan,L.Yu,andH.Zhang,“EvaluationTargetofUnmannedVehicleinFusionAirspace,”inIEEEInternationalConferenceArtificialIntelligenceandComputerApplications(ICAICA),Jun.pp.37510.1109/ICAICA54878.2022.9844489.29Khlaisamniang,P.Khomduean,Saetan,Wonglapsuwan,GenerativeAIforSelf-HealingSystems.2023,10.1109/iSAI-NLP60301.2023.10354608.FleetGenAIcanhelpimproveswarmintelligence,swarmcoordination,andtherobustness,security,
andefficiencyofunderlyingcommunicationsnetworksattheleveloforswarmsof
autonomousthings.thiscontext,ZeroTrustsecurity,safety,andresilienceintoplay—
protectingdronefleets,improvingtheintegritysharedsensing,facilitatingbettercoordination,
andreducingtheimpactofacompromiseddroneonthefleetasawhole.SwarmintelligenceOpportunity:Improvetrustworthyfusionofsensordatafrommultipleindividualsinaswarm.
Overthepastdecade,researcherspublishedtensofthousandsofpapersonsynthesizing
unifiedsituationalviewsbyfusingfromnumerousdronestogether.Supposethata
dronefleetissurveyingalarge-scaledisasterafloodorafire.Ideally,trustworthyswarm
intelligencecaninformationfrommemberoftheswarmpaintacomprehensive
pictureofthesituation.GenerativeKnowledge-SupportedTransformers(GKSTs),forexample,canfuseimageryfrom
differentviewsofatargetobject,producingmoremeaningfulimagesfromamovingvehicle.30
Furtherenhancementsofthismulti-viewapproachmightimprovetheinterpretationofcollectedfromthedifferingperspectivesofmembers.importantappreciatethattheremanywaysofrepresentingtheworld,different
approachesmaybesuitablefordifferentpurposes.Forexample,similarityclassification
algorithmscanhelptheobjectfeaturesinimagery.contrast,semantic
categorizationalgorithmslabeltheseasmembersofspecificcategoriesorclasses.
SA-SIAM(atwo-foldSemantic-Appearanceneuralnetwork)sharesinformationacross30Yu,W.Liao,C.Qu,Q.andZ.Xu,“UAVCooperativeSearchMulti-agentGenerativeAdversarialImitationin2022InternationalConferenceon
Learning,CloudComputingandIntelligentMining(MLCCIM),Aug.pp.441446.doi:10.1109/MLCCIM55934.2022.00081.separateneuralnetworks,onetrainedonSemanticinformation,theotheronAppearancedata.31
TheSemanticsideusesattentionmechanismhelpinterpretdatabasedonthetargetadditionalcontextualinformation.Althoughthisnotafull-generativeAIimplementation,itshows
howamoretargetedattentionmechanismintransformerscanbeappliedotherusecasesina
moretargetedway,whichmaybeefficientthanafull-blownLLMimplementation.ConditionalGANs(CGANs)—variantsofGenerativeAdversarialNetworksbasedspecific
conditions—beenusedformotionprediction.Thesepredictionsconsidereachobject's
relativemotionitschangingorientationrelativeaUAV.32Theseworkinconjunctiona
Siamesenetwork,inwhichneuralaresharedacrossapairofcomplementarynetworks.Thoughtheinitialresearchfocusedonindividualdrones,theworksuggestsafuture
pathforsynthesizing3Dviewsofsituationscontributionsacrossafleet.2016,researchersexploreda“socialpooling”layercouldhelpautonomousagentsmodel
theinteractionsofpeopleproximity,usingseparateLSTMnetworkspredictperson’s
motion33thiscase,theresearcherswerelookingatanautonomouscouldplanitspaththroughgroupsofindependentlymovinghumanbeings.Futureresearchexplorehowsocialpoolingcouldextendimprovemodelsthatallowdronesunderstand
currentlocationsandpredictfuturepositionsofnearbydrones,bystanderdrones,andoutsideradversarydrones.Text-to-image-baseddiffusionmodelsalsobeenusedgeneraterealisticimagesofUAVs
invaryingscenarios,improvingalgorithmsfordetectingUAVsby12%.Theresearcherscombined
normalizedmod
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 手術(shù)室收費管理措施
- 應(yīng)屆生的工作年終總結(jié)
- 寫文學(xué)評論課件
- 建設(shè)工程項目管理
- 2025年盾構(gòu)機職業(yè)技能考試題庫及答案(完整版)
- 企業(yè)安全生產(chǎn)手段
- 全科小講課規(guī)范
- 福建省莆田市2025屆高三下學(xué)期二模物理試卷(含解析)
- 2024-2025學(xué)年人教版化學(xué)九年級上冊第三單元檢測卷(含答案)
- 急性硬膜下血腫的護理
- 2025年紀檢工作要點
- 醫(yī)院工程材料采購合同范本
- 北京大學(xué)DeepSeek系列-DeepSeek與AIGC應(yīng)用
- 2025年開封大學(xué)單招職業(yè)傾向性測試題庫新版
- DB23-T 3912-2024 信息技術(shù)和工業(yè)技術(shù)深度融合指南
- DB11-T 1526-2018 地下連續(xù)墻施工技術(shù)規(guī)程
- 金屬冶煉中的鈹冶煉與鈹合金生產(chǎn)
- 加氣站安全生產(chǎn)獎懲規(guī)定模版(3篇)
- 細胞治療政策環(huán)境分析-洞察分析
- 2025年河南鄭州醫(yī)藥健康職業(yè)學(xué)院招考聘用高頻重點提升(共500題)附帶答案詳解
- 公園景觀修復(fù)零星維修施工方案
評論
0/150
提交評論