




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1.AdvancedplatformforSB?HighthroughputAutomaticLowcostHighspeedHighaccuracyBestgainofbioinformationinquantityandqualitywithunitresourceorcost.1Genomesequence:capillaryarrayelectrophoresisGeneexpressionprofiling基因表達譜:
biochip,RTPCRProteinsequence:separation&MSProteinstructure:x-raycrystallization結晶,NMRInteraction:twohybrid雙酵母雜交,TAP,biochipProteinlocalization蛋白質定位:molecularimagingMetabolite:separation&MS,NMR22.Fundamentalinstrumentmethod1、Fluorescence熒光性2、Chromatography色譜分析3、Electrophoresis電泳法4、Biochip生物芯片5、BioMassspectrometry生物質譜分析6、x-raycrystallizationX射線結晶7、NMR核磁共振8、Molecularimaging分子成像3Microdeviceforhighspeed,parallelprocessandanalysisofbiomolecules對生物分子進行快速、并行處理和分析的微型器件。2.4.Biochip42.4.1.Biochipclassificationmicro-array微陣列Microfluidics微流體“Microsystem”“Micro(Miniaturized)TotalAnalysisSystem(TAS)”
“Lab-on-a-Chip”“Biochip”5Comparison
Microarray
Microfluidics
Theory
Biointeraction
Microfluidiccontrol
Nature
Array
Network
Fabrication制造
MEMS
MEMS
Usingtime
Once
Reusable
Application
Biomedicine
Biomedicine,chemistry,environment
Industry
developed
developing
62.4.2Fabrication制造ofgenechipIn-situsynthesisPhotolithgraphicsynthesisMolecularstampMicrodottingDotcontactSprayprintPiezoelectricprint7基因芯片的制作原位合成:光刻合成技術;分子印章技術;壓電打印技術微量點樣:點接觸法;噴墨法2.4.3.Cellchip–multimicroelectrodearray82.4.3.Cellchip–chippatchclamp2.3.4.Tissuechip在基質表面固定大量的、可尋址的微小組織樣本,用于高通量檢測不同組織中DNA、RNA和蛋白質等分子的變化,稱為組織芯片。Fabricationofmicrofluidicchip:Method:
MEMS-MicroelectromechanicalSystemSi硅orglass-basedmethodPolymer聚合物-basedmethod:PDMSSpincoatSU-8Pre-exposurebakingFixmaskandwafertoholderExposurePost-exposurebakeMolddevelop,rinse,dryandclear9PourPDMS10SpincoatPDMSlayerBakePDMS
CutPDMSedgePeeloffPDMSDrillholesChannelCheckWashPlasmatreatmentAttachmentChipbakingPolymer-basedmethod:PMMA11SoftlithographyMicrofluidiccapillaryelectrophoresis微流體毛細管電泳Conventionalcapillaryelectrophoresis常見的122.1、進樣13PinchingPinchfactor:p=Ib/IsDispensefactor:d=Ibw/IsAlarieJ.P.etal.Electrophoresis2001,22,312-317.Electrokineticpinching14Is+Isw+Ib+Ibw=0
Is=IbwIsw=Ibg=Ib/Is(gatingfactor)Electrokineticgating15CZEseparationofflavinMetabolitese.g.16Applications1.DNA:genomics2.Protein:proteomics3.Metabolite:metabolomicsormetabonomics4.Clinicdiagnosis臨床診斷5.Drugscreening藥物篩選6.Singlecellanalysis7.Interactionanalysis交互分析8.Anti-bioterrorism9.Forensicanalysis法醫(yī)鑒定……17QuadrupoleMSTOFMS182.5.Bio-MSMALDI19ESI500600700800900100011001200130014001500160017001800m/z0100%998.2942.7893.2848.6808.3616.2771.5738.0617.21060.5999.61131.11061.81211.81132.51137.51305.01413.71541.91696.3160001700018000m/z0100%16951.420ESI-Q-TOFMS21Bragg
diffractionequation:
DB=BF=dsin
n=2dsin
222.6.X-raycrystallization1H:2.7.NMR1924:Pauliraisedtheidea;1952:NobelPrizetoBloch(Stanford)&Purcell(Harvard)23ApplicationMolecularstructureidentificationMetabolomicsMedicaldiagnosis242.8.MolecularimagingOpticalimaging光學成像3.-Omicmeasurementplatform1.Genomicplatform2.Transcriptomicplatform3.Proteomicplatform4.Metabolomicplatform25GenomicsTranscriptomicsProteomicsMetabolomicsDNARNAProteinMetaboliteOMICS2627GenomeTranscriptomeProteomeMetabolome~30,000genes~100,000transcripts~1,000,000proteinforms?~2000to5,000metabolitesThe‘omic’s28283.1.Genomicplatform3.1.1.DNAsequencing1.Sangersequencing2.Cyclic-arraysequencing3.1.2.SNP(singlenucleotidepolymorphism,SNP)
3.Nanoporesequencing4.Hybridization-basedsequencing29Whatisgenomics?Genomicsis“thestudyoffunctions
andinteractionsofallthegenesin
thegenome,includingtheirinteractionswithenvironmentalfactors.Collins,FrancisandAlanGuttmacherNEJM,Vol.347:1512-1520.Agenomeis“alltheDNAcontained
inanorganismoracell,whichincludes
boththechromosomeswithinthe
nucleusandtheDNAinmitochondria…allourgenestogether.”30Genomics101:AnIntroductionTraditionalPublichealth
GeneticsRarediseasesSinglegenedisorders單基因失調PublichealthactivitiesNewbornscreening新生兒篩查Reproductivehealth生殖健康Geneticservices31ContemporaryGenetics
當代基因組學CommondiseasesMultiplegenes多基因Gene/environmentinteractionsPublichealthactivities/implicationsChronicdiseases慢性病Infectiousdiseases傳染病Environmentalhealth環(huán)境健康學Epidemiology流行病學32GeneticMutationsAllofusmayhaveatleastone
geneticmutation.Someareinherited.遺傳Othersoccurrandomlyorasaresultofenvironmentalfactors,suchasdiet,drugs,andinfections.Mostdiseaseshavemultifactorialcausation(geneticandenvironmental).Geneticvariationsputindividualsatincreasedriskfordevelopingcertaindiseases,buttheydonotmakeitcertainthatthosediseaseswilloccur.Geneticmutationshavebeen
identifiedthatplayarolein:Chronicdiseases慢性病CancerCardiovasculardisease心血管疾病Occupationaldiseases職業(yè)病Bladdercancer膀胱癌InfectiousdiseasesHIV/AIDS33Genesand10U.S.Killers:HeartdiseaseMalignantneoplasms惡性腫瘤Cerebrovasculardiseases腦血管疾病Chroniclower
respiratorydiseases慢性下呼吸道疾病Accidents意外事故
(unintentionalinjuries)Diabetesmellitus糖尿Influenzaandpneumonia流感和肺炎Alzheimer’sdisease阿爾茨海默氏病Nephritis,nephroticsyndrome,andnephrosis(kidneydisease)腎炎、腎病綜合征等Septicemia敗血癥34What’snewingenomics?GenetictestingTodetectmutations檢測突變Fordiseasediagnosisandprognosis預知Forthepredictionofdiseaseriskin
individualsorfamiliesSeveralhundredgenetictestsareinuse.Raregeneticdisorders家族遺傳疾病
(musculardystrophies,cysticfibrosis,Huntington’sdisease)Complexconditions(breast,ovarian,
andcoloncancers)Pharmacogenomics藥物基因組學Thedevelopmentofdrugstailored定做
tospecificsubpopulations亞種群basedongenesPharmacogenomicshasthepotentialto:DecreasesideeffectsofdrugsIncreasedrugeffectivenessMakedrugdevelopmentfasterandlesscostly35What’snewingenomics?(cont.)Recentresearchingenomicsincludes:Learningmoreaboutthegenetic
underpinnings基礎
ofchronicdiseasesDevelopingmousemodelsofhumangenesDevelopinggeneticfingerprinting基因指紋鑒別法
forchildhoodcancerConductingstemcellresearch指導干細胞研究Identifyingtumorsuppressorgenes識別腫瘤抑制基因Policydevelopments政策演變relatedto
genomicsinclude:Activitiesrelatedtoanti-discrimination反歧視andethics倫理學ExpandednewbornscreeningNewfundingforresearchonrarediseases36ThemainaimofgeneticsistounderstandthisrelationshipTalkalittlebitaboutwhereIamcomingfromGenomicMedicine:
Predictive,personalized,andpre-emptive預測、個性化、先發(fā)制人371.SangersequencingPNAS,74(1977)560.Maxim-GilbertMethod38SangerMethodH2OXdNTPddNTP39Smithetal.Nature,321(1986)674.Couplingwithfluorescenttag熒光標記insteadof*PProberetal.Science,238(1987)336.40FrancisCollins
DirectorofHGPatNIHHumanGenomeProject(HGP)CollinsF.,GalasD.Science,262(1993)43.4142GenomicsTimelines43CapillaryElectrophoresis毛細管電泳444546Laserinducedfluorescencedetector激光激發(fā)熒光成像47ABI3700DNASequencerbyDr.Dovichi’sGroupatUA(UW)CapillaryArrayElectrophoresis毛細管陣列電泳48FourKeystonesforSangerSequencingddNTPchainterminationstrategy雙脫氧核苷酸鏈終止2.Fluorescentlabel
熒光標記3.Capillaryelectrophoresisseparation
毛細管電泳分離4.Laserinducedfluorescencedetection
激光激發(fā)熒光成像檢測49ProtocolofSangerSequencing方案1.GenomicDNAisfragmentedwithshotgunstrategy;2.Clonedtoaplasmid質粒vectorandusedtotransformE.coli;3.BacterialcolonyispickedandplasmidDNAisolated;4.Eachcyclesequencingreactiontakesplacewithinamicroliter-scalevolume,generatingaladderofddNTP-terminated,dye-labeledproducts;5.High-resolutionelectrophoreticseparationwithfourchannellaserinducedfluorescencedetection;6.Dataanalysis(bioinformatics):base-callingalignmentofsequencereads
denovoassembly(e.g.,BLASTorBLAT)genomebrowsingandannotationdatamining……50Advantage1.Longread-lengths(1000bp)2.Highrawaccuracy(99.999%)Disadvantage1.Biologicalbias偏離2.Relativehighcost
0.5$/1kb
5M$for1GB(10-foldcoverage)TheSangersequencingissuitableforsmall-scaleprojectsinthekilobase-to-megabaserange.Thisisaconsequenceofitsgreater‘granularity’(thatis,theabilitytoefficientlyoperateateithersmallorlargeproductionscales)relativetothesecondgenerationtechnologies.51Dr.Mathies’groupatU.C.BerkeleyNewdevelopment:MicrofluidicCapillaryArrayElectrophoresis微流體毛細管陣列電泳OneandHalfgenerationDNASequencer522.Cyclic-arraysequencingThesecondgenerationDNAsequencing:sequencing-by-synthesisDefinition定義:Theconceptofcyclic-arraysequencingcanbedefinedasthesequencingofadense稠密arrayofDNAfeaturesbyiterativecycles迭代循環(huán)ofenzymaticmanipulationandimaging-baseddatacollection.GeneralProtocol:1.LibrarypreparationbyrandomfragmentationofDNA;2.invitroligationofcommonadaptorsequences;3.Generationofclonally無性繁殖clustered聚集成群amplicons擴增(insitupolonies,emulsionPCRorbridgePCR);4.Cyclicarraysequencing;5.Dataanalysis.Category:1.454sequencing(RocheAppliedScience,Basel);2.Solexa(Illumina,SanDiego);3.SOLiD(AppliedBiosystems,FosterCity)4.Polonator(Dover,Harvard)5.SingleMoleculeSequencer(Helicos,Cambridge…)531.454sequencingStep1:54Step2:AninvitroconstructedadaptorflankedshotgunlibraryisPCRamplifiedinthecontextofawater-in-oilemulsion.OneofthePCRprimersistetheredtothesurface(5’-attached)ofmicron-scalebeadsthatarealsoincludedinthereaction.Alowtemplateconcentrationresultsinmostbead-containingcompartmentshavingeitherzerooronetemplatemoleculepresent.PCRampliconsarecapturedtothesurfaceofthebead.Afterbreakingtheemulsion,beadsbearingamplificationproductscanbeselectivelyenriched.EachclonallyamplifiedbeadwillbearonitssurfacePCRproductscorrespondingtoamplificationofasinglemoleculefromthetemplatelibrary.55Clonallyamplified
28-
mbeadsgeneratedbyemulsionPCRserveas
sequencing
features,arepre-incubatedwithBacillus
stearothermophilus(Bst)polymeraseandsingle-strandedbindingprotein,andarefurtherrandomlydeposited
toamicrofabricatedarrayofpicoliter-scalewells
(withdimensionssuchthatonlyonebeadwillfitperwell).
Withpyrosequencing,eachcycleconsistsof
theintroductionofasinglenucleotidespecies,
followedbyadditionofsubstrate(luciferin,
adenosine5’-phosphosulphate)todrivelight
productionatwellswherepolymerase-driven
incorporationofthatnucleotidetookplace.
Thisisfollowedbyanapyrasewashtoremove
unincorporatednucleotide.Step3:Strategyforcyclicarraysequencing56PPPPPPPPPOHPPATPATPATP+luciferin+luciferin+luciferinPPPPPP57PPPPPPPPPOHPPATPATPATP+luciferin+luciferin+luciferinPPPPPP581-mer2-mer3-mer4-merBrightnessofflashisproportionaltonumberofnucleotidesaddedFlashbrightnessTCACTTCAAGGGT…Flashistoobright59ATGCReadlength350-400bp200cycles~0.5Gb/run603.Advantage&Disadvantage:
Thekeyadvantageofthe454platformis
read-length.Forexample,the454FLXinstrumentgenerates~400,000
readsperinstrument-runatlengthsof200to300bp.itmaybethemethodofchoiceforcertainapplicationswherelongread-lengthsarecritical(e.g.,denovoassemblyandmetagenomics)
Themajorlimitationofthe454technologyrelatestohomopolymers(thatis,consecutiveinstancesofthesamebase,suchasAAAorGGG).Becausethereisnoterminatingmoietypreventingmultipleconsecutiveincorporationsatagivencycle.Asaconsequence,thedominanterrortypeforthe454platformisinsertion-deletion,ratherthansubstitution.612.Solexa62Step1:GenomicDNALibraryPreparation63Step2:
ClusterGeneration(BridgePCR)hybridizetothelawnofprimersextendedbypolymerases12345Double-strandedmoleculeisdenaturedOriginaltemplateshouldbewashedawayNewlysynthesizedcovalentlyattachedadjacentprimerstoformabridgeHybridizedprimerisextendedbypolymerasesDouble-strandedbridgeisformed6467891011Double-strandedbridgeisdenaturedResult:twocopiessingle-strandedtemplatesadjacentprimerstoformbridgesextendedbypolymerasesmultiplebridgesareformeddsDNAbridgesdenaturedReversestrandscleavedandwashedawayLeavingaclusterwithforwardstrandsonlySequencingprimerishybridizedtoadapter65Step3:SequencingEachsequencingcycleincludesthesimultaneousadditionofamixtureoffourmodifieddeoxynucleotidespecies,eachbearingoneoffourfluorescentlabelsandareversiblyterminatingmoietyatthe3’hydroxylposition.AmodifiedDNApolymerasedrivessynchronousextensionofprimedsequencingfeatures.Thisisfollowedbyimaginginfourchannelsandthencleavageofboththefluorescentlabelsandtheterminatingmoiety.66Automationisimportant!67Nebulizer~400bpIllumina68PPPPPPPPPPSTOPSTOPSTOPSTOPPP69MetzgerM(2009)NatureReviewsGenetics11:31-4670GCTGA…71Flowcell8lanesForpicturetaking:Eachlaneisbrokenupinto100tiles拼貼,eachfluorisimagedseparately–2400picturestakenpercycleCameratimeisthelimitingstep!72PPPPPPPPPPSTOPChemistryproblem1:terminatorisretained保留outofphase73PPPPPPPPPPPSTOPChemistryproblem2:fluor熒光劑isretained74Readlength30–120bp~3–30Gb/runGAIIIllumina>100Gb/runHiSeq90x106reads/lane*102bp/read=9x109bp/lane*16lanes/run=144Gb/run753.Features:Read-lengthsupto36bparecurrentlyroutine.Longerreadsarepossiblebutmayincurahighererrorrate.Read-lengthsarelimitedbymultiplefactors多因素thatcausesignaldecayanddephasing移相,suchasincompletecleavageoffluorescentlabelsorterminatingmoieties.Thedominant顯性的errortypeissubstitution代替,rather
thaninsertionsordeletions(Homopolymers均聚物arecertainlylessof
anissuethan454).Averagerawerrorratesareontheorderof1–1.5%.Higheraccuracybaseswitherrorratesof0.1%orlesscanbeidentifiedthroughqualitymetrics質量度量學associatedwitheachbase-call.763.SOLiDSimilarto454platform,inSOLiDstrategygDNAwasfragmentedbyshotgun,andthenamplified放大withEmulsionPCR.微乳液PCR法77Clonallyamplifiedbeadsareusedtogenerateadisordered,densearrayofsequencingfeatures.Sequencingisperformedwithaligase,ratherthanapolymerase,eachsequencingcycleintroducesapartiallydegeneratepopulationoffluorescentlylabeledoctamers.Thepopulationisstructuredsuchthatthelabelcorrelateswiththeidentityofthecentral2bpintheoctamer(thecorrelationwith2bp,ratherthan1bp,isthebasisoftwobaseencoding).Afterligationandimaginginfourchannels,thelabeledportionoftheoctamer(thatis,‘zzz’)iscleavedviaamodifiedlinkagebetweenbases5and6,leavingafreeendforanothercycleofligation.Severalsuchcycleswilliterativelyinterrogateanevenlyspaced,discontiguoussetofbases.Thesystemisthenreset(bydenaturationoftheextendedprimer),andtheprocessisrepeatedwithadifferentoffset(aprimersetbackfromtheoriginalpositionbyoneorseveralbases)suchthatadifferentsetofdiscontiguousbasesisinterrogatedonthenextround.787980Features:814.SingleMoleculeSequencerThereisnoclonalamplificationsteprequired.Poly-A–tailedtemplatemoleculesarecapturedbyhybridizationtosurface-tetheredpoly-Toligomerstoyieldadisorderedarrayofprimedsinglemoleculesequencingtemplates.TemplatesarelabeledwithCy3,suchthatimagingcanidentifythesubsetofarraycoordinateswhereasequencingreadisexpected.Eachcycleconsistsofthepolymerase-drivenincorporationofasinglespeciesoffluorescentlylabelednucleotideatasubsetoftemplates,followedbyfluorescenceimagingofthefullarrayandchemicalcleavageofthelabel.Helicos82MetzgerM(2009)NatureReviewsGenetics11:31-4683105to140Megabasesperhour~35bpaveragereadlength84(2009)Volume27:847Helicos,28Xcoverage,84Gb752CNVs2.8MSNPs85IonTorrentSingle-moleculesequencing86GuptaPK.(2008)Single-moleculeDNAsequencingtechnologiesforfuturegenomicsresearch.TrendsBiotechnol.26:602-11+-Single-moleculesequencing87GuptaPK.(2008)Single-moleculeDNAsequencingtechnologiesforfuturegenomicsresearch.TrendsBiotechnol.26:602-11+-88GuptaPK.(2008)Single-moleculeDNAsequencingtechnologiesforfuturegenomicsresearch.TrendsBiotechnol.26:602-1189PacificBiosciences
Single-moleculesequencing90ZMW:ahole,tensofnanometersindiameter,fabricatedina100nmmetalfilmdepositedonasilicondioxidesubstrate detectionvolume20zeptoliters(10-21liters).excitationemissionemission91PacBiotechnologybackgrounder:/index.php?q=technology-introduction92WhentheDNApolymeraseencountersthenucleotidecomplementarytothenextbaseinthetemplate,itisincorporatedintothegrowingDNAchain.Duringincorporation,theenzymeholdsthenucleotideintheZMWsdetectionvolumefortensofmilliseconds,ordersofmagnitudelongerthantheaveragediffusingnucleotide.Thesystemdetectsthisasaflashofbrightlightbecausethebackgroundisverylow.ThepolymeraseadvancestothenextbaseandtheprocesscontinuestorepeatPacBiotechnologybackgrounder:/index.php?q=technology-introduction93multiplereadsofthesamemolecule94EidJetal.(2009)MoleculesReal-TimeDNASequencingfromSinglePolymerase
Molecules.Science323,133PMID:1902304495Doesitwork?150bpcirculartemplate~93%rawaccuracy15xcoverage99.3%accuracy96PacBioclaimsthat,by2013,thetechnologywillbeabletogivea‘raw’humangenomesequenceinlessthan3min,andacompletehigh-qualitysequencein15min.GuptaPK.(2008)Single-moleculeDNAsequencingtechnologiesforfuturegenomicsresearch.TrendsBiotechnol.26:602-11~2-5bp/sec97Comparison98IonTorrent99Nature475:348(2011)~100bpreads30Mb/run
100101IonTorrentreadquality102Applicationsofnext-generationsequencing1033.Nanoporesequencing1041054.Hybridization-basedsequencing雜交MicroarrayDNAbiochipIntermsofsequencing,limitationsofmicroarraysincludethefollowing:(i)sequencesthatarerepetitiveorsubjecttocrosshybridizationcannoteasilybeinterrogated被詢問;(ii)itremainsunclearhowdenovosequencingcanbeachievedwithhybridization;(iii)withoutverycarefuldataanalysis,falsepositivesposeanimportantproblem,anditisnotclearhowtoobtaintheequivalentofredundant多余的coveragethatispossiblewithconventional常用的andcyclic-arraysequencing.Ithaditsgreatestimpactinthecontextofgenome-wideassociationstudies,whichrelyonarray-basedinterrogation(thatis,genotypingbyhybridization)ofahighlydefinedsetofdiscontiguousgenomiccoordinates.106SNP1073.2.TranscriptomicplatformNowthatmoreandmoregenomesequencesarebeingcompleted,newquestionsariselikewhatarethefunctionalrolesofdifferentgenesandinwhatcellularprocessesdotheyparticipate.Howaregenesregulatedandhowdogenesandgeneproductsinteract.Howdoesgeneexpressionlevelsdifferinvariouscelltypesandstatesandhowisgeneexpressionchangedbyvariousdiseasesortreatments.AlthoughmRNAisnottheultimateproductofagene,transcriptionisthefirststepingeneregulationandinformationaboutthetranscriptlevelsisneededforunderstandinggeneregulatorynetworks.Thus,thenewchallengeistoidentifyallgenes,theirexpressionpatternsandtheirfunction.
Transcriptomics
orglobalanalysisofgeneexpression,alsocalledgenome-wideexpressionprofiling,isoneofthetoolsthatisusedtogetanunderstandingofgenesandpathwaysinvolvedinbiologicalprocesses.Theideaunderlyingthisapproachiscalled“guiltbyassociation”,whichmeansthatgenesshowingsimilarityinexpressionpatternmaybefunctionallyrelatedandunderthesamegeneticcontrolmechanism.108ESTsequencing
SAGE:SerialanalysisofgeneexpressioncDNAmicroarraysandoligo-microarrays109
TheSAGEmethod
isbasedoncountingsequencetagsof10-15bpfromcDNAlibraries.Thesetagsarelinkedtogetherinachainandclonedintoavectorfromwhichtheyaresequenced.IncontrasttoESTsequencing,SAGEisbestappliedtoorganismswhosegenomicsequencesareknownorthathaveasubstantialcDNAsequencedatabaseinordertoidentifythegenesthataresequenced.Becauseonlyshortpiecesofsequencearesequencedpergene,theinsertswiththemultiplesequencetagshavetobesequencedseveraltimestoreducetheamountofsequencingmistakes.Inaddition,alargenumberoftagshavetobesequencedinordertoquantifytheexpressionofgenesthathavealowexpressionlevel.SAGE110DNAchip111Microarraydataandannotation112WhatisProteomics?Proteomics
includesnotonlytheidentificationandquantificationofproteins,butalsothedeterminationoftheirlocalizations,modifications,interactions,activities,and,ultimately,theirfunctions.
StanFieldsinScience,2001.1133.3.ProteomicplatformGenome
staticabletoamplify(PCR)homogeneousnovariabilityinamountProteome
dynamic–conditiondependentnoamplificationnon-homogenous(cell-specific)highvariabilityinamount(>106)為什么有蛋白質組學Comparison:Genome-Proteome1143.3.1、Identification&Quantitation3.1.1、From2DGEtoMS3.1.2、FromMDLCtoMS3.1.3、Quantative
Proteomics:SIT&ICAT3.1.4、Microarray-basedproteomics3.1.5、Singlecellproteomics115BLOTStain/BlotImage/DatabaseOrganTissueCells2-DArrayIPGSamplePrepFractionationSolubilizationSDSPAGEOOOOOOOOOOOOOOOOOOOOOOOOOSpotCutterMALDI-TOFMSNanoESI-MS/MSMassSpec2-DArrayProteinID
ImageDatabase
DatabaseSearchPROTEOMEBROWSERMassPrep3.1.1、From2DGEtoMS1162DGE:Snapshotsofacell細胞快照117118TheFirstDimension:IEF119TheSecondDimension:SDS1201211221231564Mouseliver肝臟proteinsIPG4-5IPG4-7IPG5-6IPG6-714912181429124IPG4-7IPG4-7MouseliverproteinsIPG5-6IPG6-7125GelStain著色劑CoomassieStainSilverStainFluorescentStain126GelcuttingGelPickerPickerheadRinsestationCameraandlightassemblyGeltrayMicrotitre-platesandracks127GelDigestionRinsestationSampleneedlesBuffervalvecontrolEnzymecontainerGelplug(sample)platesPeptideextractplates128SamplePreparationforMS
樣品制備WashDryplugsCollectenzymeIncubateAddenzymeExtractpeptidesinnewplates129MALDI-TOF
基質輔助激光解吸電離飛行質譜130mPMF131mPMFSequencing132ProteinIDbyESI-MS/MS.表達序列標簽(EST)133LCESI-MS/MSIsolateddigestedproteinsCapLCdataprocessinganddatabasesearchingresultsbrowserQ-TofautomatedESI-MS/MS134
.+++++++++SAMPLESOLUTIONNEBULISATIONATMOSPHERICPRESSURESKIMMERVACUUMIONEVAPORATION+++++++++++++ESI135ESI136Q-Tof(MS-MS)137EST138FindSequenceTag139ProteinIDbyLC/MS/MS從新測序(DeNovo)140DeNovosequencing16O/18Olabeledy’’ionsun-labeledbions(N-terminal)(C-terminal)141142Threelevelsofproteomicsequencing
Instrument儀器IdentificationPMF
MALDITOF
50%EST
LC/MS/MS
80%DeNovo LC/MS/MS
>80%143FlexibilityandVariationinthe
ProteomicsProcess
Labelling
and
Quantitation
Separation
Sample
Processing
IdentificationCharacterisation
Protein
Function
AssaysSamplePrepandFractionation
Samples:
Tissues
CellsSerum...Information:Proteins
Targets
Markers...144NumberofProteinsperGenomeHaemophilus 1742E.coli 4413Yeast 6600Caenorhabditis 18000Drosophila 13000Human 80000!
Evenwiththebest2Dgeltechnology,multipleproteinsaremigratingtogetherinE.coliandyeastsamples.145Laborintensive勞動密集Timeconsuming耗費時間Difficulttohandleandautomate難以自動化操作Samplesimbeddedingel樣品嵌入Poorabilitytohandleproteinsthatare
hydrophobic疏水的acidicorbasic酸性的MWT<10kDaor>200kDaphosphorylated,glycosylated磷酸化和糖基化的membranebound薄膜束縛
LargeabundantproteinsmasksmalleronesSampleloading(sensitivity)limitedto<250ugand<500ulinvolumeHighresolutionseparationresolve>1,000proteinsIsoelectricpoint等電點andMWTinfoRunsinparallelHistoricalmethodofchoice2-DGelsforProteomics:
LimitationsAdvantages1463.1.2、FromMDLCtoMS147Prefractionation初步分離Removelargeabundantproteins(IgG,albumin)tohelpimprove2D-gelsensitivityEnrichlowabundantproteinstoboost醉翁急啊sensitivityRunGelIncompatible不相容的Samples(“gel-challenged”)Replace/augment2D-gelswithMDLCTechnologyReplace2D-gelswithcompleteMDLCPerformMDLCfollowedby1-DSDSPAGEUseMDLCwithICATtechnologyProteinTargetPurificationFunctionalProteomicsAnalyzeprotein-proteininteractionsWhereCanChromatography色譜技術
TechniquesHelpinProteomics?148ChromatographyforProteomicsBroadsamplerangeEasilyscaledforpreparativeConcentratesamplestoboostsensitivityHandlesanytypeofproteinStraightforwardautomation簡單的自動化proteinsstayinliquidphaseEasytocollectfractionsFlexibilityinchemistryandexperimentdesignSamplepreptoMDLCCleanersamplesimprovequalityofMShits.NoPIorMWTinformationAdvantagesLimitations149MDLCScenarios情節(jié)
for
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省南京市棲霞區(qū)、雨花區(qū)、江寧區(qū)2025屆中考最后沖刺模擬(一)物理試題文試題含解析
- 畢節(jié)職業(yè)技術學院《高級英語Ⅰ》2023-2024學年第一學期期末試卷
- 武漢大學《工程倫理學B》2023-2024學年第二學期期末試卷
- 湖南城建職業(yè)技術學院《食品無損檢測》2023-2024學年第一學期期末試卷
- 2025屆浙江省金華市金東區(qū)初三下學期定時訓練化學試題含解析
- 長沙南方職業(yè)學院《打印技術與應用》2023-2024學年第二學期期末試卷
- 安徽省蕪湖市2024-2025學年數(shù)學四下期末考試試題含解析
- 湖南省十四校聯(lián)考2024-2025學年高三下學期期末聯(lián)考化學試題含解析
- 浙江工業(yè)大學《生態(tài)工程學》2023-2024學年第二學期期末試卷
- 新疆能源職業(yè)技術學院《早教機構環(huán)境創(chuàng)設》2023-2024學年第二學期期末試卷
- 《檢驗檢測機構監(jiān)督管理辦法》培訓結業(yè)考核試題附答案
- DB13(J)∕T 105-2017 預應力混凝土管樁基礎技術規(guī)程
- 加壓氣化操作規(guī)程(共115頁)
- 標準魯班尺尺寸對比表
- 初中綜合實踐課程標準
- 基于STC89C52單片機-紅外智能循跡小車
- PackingList外貿裝箱單模板
- 談文旅融合發(fā)展的深層意義
- 自考勞動法名詞解釋和論述歷年真題重要考點必須掌握
- 第三章-件雜貨裝卸工藝
- 數(shù)據(jù)中心項目運營方案-范文參考
評論
0/150
提交評論