




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一二三四五六七注意:1、所有答題都須寫在此試卷紙密封線右邊,寫在其它紙上一律無效.2、密封線左邊請勿答題,密封線外不得有姓名及相關(guān)標(biāo)記.線線封密L2解:先求圓柱面的軸L0的方程.由已知條件易知,圓柱面母線的方向是圓柱面的軸L0是到這三點等距離的點的軌跡,即即1,?????????????????將L0的方程改為標(biāo)準(zhǔn)方程對圓柱面上任意一點S(x,y,z),有即222x22M=A,只需證明A與M的各個列向量對應(yīng)相等即可.若以ei記第i個基本單位列向由2Me3=MF2e1=F2Me1=F2Ae1=AF2e1=Ae3Me=MFn?1e=Fn?1Me=Fn?1Ae=(2)解:由(1C(F)=span{E,F,F2,…,Fn?1}設(shè)x0E+x1F+x2F2+…+xn?1Fn?1=O,等式兩邊同右乘e1,利用(*)得線封密線封密dimC(F)=dimC(F)=n.是V上的線性變換.如果fg?gf=f,證明:f0,且f,g有公共特征向量.W={η∈V|f(η)=λ0η}.于是,W在f下是不變的.…………(1分)下面先證明,λ0=0.任取非零η∈W,記m為使得η,g(η),g2(η),…,gm(η)線性相關(guān)的最小的非負整數(shù),于是,當(dāng)0≤i≤m?1時,η,g(η),g2(η),…,gi(η)線性無關(guān)…..(2分) 0≤i≤m?1時令Wi=span{η,g(η),g2(η),…,gi?1(η)},其中,W0={θ}.因此,dimWi=i是不變的.下面證明,Wm在f下也是不變的.事實上,由f(η)=λ0η,知fg(η)=gf(η)+f(η)=λ0g(η)+λ0η(5分).............................用歸納法不難證明,fgk(η)一定可以表示成η,g(η),g2(η),…,gk(η)的線性組合,且因此,Wm在f下也是不變的,f在Wm上的限制在基η,g(η),g2(η),…,gm?1(η)下的由于fg?gf=f在Wm上仍然成立,而fg?gf的跡一定為零,故mλ0=0,即任取η∈W,由于f(η)=θ,fg(η)=gf(η)+f(η)=g(θ)+f(η)=θ,所以,g(η)∈W.因此,W在g下是不變的.從而,在W中存在g的特征向量,這也是f使得fm(xj)?fn(xj)<ε對每個j=0,1,2,…,K成立.于是?x∈[a,b],設(shè)x∈[xj,xj+1],則fm(x)?fn(x)≤fm(x)?fm(xj)+fm(xj)?fn(xj)+fn(xj)?fn(x),=fm'(ξ)(x?xj)+fm(xj)?fn(xj)+fn'(η)(x?xj)<(2M+1)ε.…(5分)令在上不能保證處處可導(dǎo).(10分)散.3dt線封密3dt?????????線封密I23dt連續(xù)可微函數(shù),滿足=x2y2,計算積分解:采用極坐標(biāo)x=rcosθ,y=rsinθ,則過點A(0,f(0)),與點B(1,f(1))過點A(0,f(0)),與點B(1,f(1))的直線與曲線y=f(x)相交于點證明:因為f(x)在[0,c]
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高新技術(shù)產(chǎn)業(yè)科技創(chuàng)新成果展示表
- 外貿(mào)英語和商務(wù)談判技巧試題庫
- 人工智能輔助環(huán)保政策制定與執(zhí)行協(xié)議
- 制造業(yè)企業(yè)數(shù)字化轉(zhuǎn)型與綠色投資效率研究
- 《現(xiàn)代漢語語法結(jié)構(gòu)解析:小學(xué)語文教學(xué)教案》
- 各省市地區(qū)GDP收入比較表
- DB14-T 3408-2025 羊草根莖建植草地技術(shù)規(guī)程
- 跨境物流配送服務(wù)合作協(xié)議
- 低空經(jīng)濟對城市規(guī)劃與建設(shè)的影響
- 零售市場銷售趨勢預(yù)測表
- ISO45001職業(yè)健康管理體系培訓(xùn)課件
- 四川省成都市2024年小升初英語試卷(含答案)
- 化學(xué)物質(zhì)的性質(zhì)與變化考核試卷
- DB4403-T137-2021用戶智能配電站系統(tǒng)建設(shè)規(guī)范
- 《泊秦淮》《賈生》教學(xué)課件 統(tǒng)編版語文七年級下冊
- DL∕T 2528-2022 電力儲能基本術(shù)語
- 畜牧機械牧場養(yǎng)殖場智能化建設(shè)考核試卷
- 2024年安徽高考化學(xué)真題試卷(原卷版+含解析)
- JCT437-2010 自應(yīng)力鐵鋁酸鹽水泥
- 2024年遼寧省中考語文試卷(含答案解析)
- 江西省2024年中考數(shù)學(xué)試卷【附真題答案】
評論
0/150
提交評論