中國礦業(yè)大學(xué)(北京)《誤差理論及數(shù)據(jù)處理》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
中國礦業(yè)大學(xué)(北京)《誤差理論及數(shù)據(jù)處理》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
中國礦業(yè)大學(xué)(北京)《誤差理論及數(shù)據(jù)處理》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
中國礦業(yè)大學(xué)(北京)《誤差理論及數(shù)據(jù)處理》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
中國礦業(yè)大學(xué)(北京)《誤差理論及數(shù)據(jù)處理》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁中國礦業(yè)大學(xué)(北京)《誤差理論及數(shù)據(jù)處理》

2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)抽樣時(shí),需要選擇合適的抽樣方法。假設(shè)我們有一個(gè)大規(guī)模的數(shù)據(jù)集,以下關(guān)于抽樣方法選擇的描述,正確的是:()A.簡單隨機(jī)抽樣能夠保證樣本的代表性,適用于任何情況B.分層抽樣在數(shù)據(jù)存在明顯分層特征時(shí)效果不佳C.系統(tǒng)抽樣比隨機(jī)抽樣更能準(zhǔn)確反映總體特征D.整群抽樣可以節(jié)省抽樣成本,但可能導(dǎo)致樣本偏差較大2、數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量的監(jiān)控是持續(xù)改進(jìn)數(shù)據(jù)質(zhì)量的重要手段。以下關(guān)于數(shù)據(jù)質(zhì)量監(jiān)控的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量監(jiān)控可以通過設(shè)置數(shù)據(jù)質(zhì)量指標(biāo)、定期檢查和預(yù)警等方式來實(shí)現(xiàn)B.數(shù)據(jù)質(zhì)量監(jiān)控應(yīng)覆蓋數(shù)據(jù)的采集、存儲(chǔ)、處理和使用等各個(gè)環(huán)節(jié)C.數(shù)據(jù)質(zhì)量監(jiān)控需要建立有效的反饋機(jī)制,及時(shí)發(fā)現(xiàn)和解決數(shù)據(jù)質(zhì)量問題D.數(shù)據(jù)質(zhì)量監(jiān)控只需要在數(shù)據(jù)倉庫中進(jìn)行,其他數(shù)據(jù)源不需要進(jìn)行監(jiān)控3、數(shù)據(jù)分析中的特征工程旨在從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要分析股票市場數(shù)據(jù),需要從歷史價(jià)格、成交量等原始數(shù)據(jù)中構(gòu)建有效的特征。以下哪種特征構(gòu)建方法在股票數(shù)據(jù)分析中可能最為有效?()A.基于時(shí)間序列的特征提取B.基于統(tǒng)計(jì)的特征構(gòu)建C.基于主成分分析的特征降維D.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)4、在數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是一種常用的統(tǒng)計(jì)方法。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的成績,以下關(guān)于假設(shè)檢驗(yàn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.首先需要提出原假設(shè)和備擇假設(shè),然后根據(jù)樣本數(shù)據(jù)計(jì)算檢驗(yàn)統(tǒng)計(jì)量B.如果p值小于預(yù)先設(shè)定的顯著性水平,就拒絕原假設(shè),認(rèn)為新教學(xué)方法有效C.假設(shè)檢驗(yàn)的結(jié)果完全取決于樣本數(shù)據(jù)的大小和分布,與研究問題的實(shí)際情況無關(guān)D.可以通過控制樣本量和顯著性水平來平衡檢驗(yàn)的靈敏度和特異性5、對于一個(gè)不平衡的數(shù)據(jù)集(例如,某一類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別),以下哪種方法可以提高模型對少數(shù)類別的識別能力?()A.過采樣B.欠采樣C.調(diào)整分類閾值D.以上都是6、在數(shù)據(jù)分析中,時(shí)間序列分析用于處理隨時(shí)間變化的數(shù)據(jù)。假設(shè)要預(yù)測股票價(jià)格的未來走勢,以下關(guān)于時(shí)間序列分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.移動(dòng)平均法可以平滑數(shù)據(jù),去除短期波動(dòng),突出長期趨勢B.指數(shù)平滑法能夠根據(jù)歷史數(shù)據(jù)的權(quán)重對未來進(jìn)行預(yù)測,近期數(shù)據(jù)的權(quán)重通常較大C.自回歸整合移動(dòng)平均(ARIMA)模型可以捕捉時(shí)間序列的線性和季節(jié)性特征D.時(shí)間序列分析能夠準(zhǔn)確預(yù)測股票價(jià)格的未來值,不受市場不確定性和突發(fā)事件的影響7、數(shù)據(jù)分析中的數(shù)據(jù)血緣追蹤用于了解數(shù)據(jù)的來源和流向。假設(shè)要追蹤一個(gè)分析報(bào)告中數(shù)據(jù)的演變過程,以下關(guān)于數(shù)據(jù)血緣追蹤的描述,正確的是:()A.不記錄數(shù)據(jù)的處理步驟和轉(zhuǎn)換過程,無法進(jìn)行血緣追蹤B.簡單地記錄部分?jǐn)?shù)據(jù)的來源,不考慮整個(gè)流程C.建立完善的數(shù)據(jù)血緣管理系統(tǒng),記錄數(shù)據(jù)的采集、清洗、轉(zhuǎn)換、聚合等全過程,以便清晰地了解數(shù)據(jù)的來龍去脈和影響范圍D.認(rèn)為數(shù)據(jù)血緣追蹤是額外的工作,對數(shù)據(jù)分析沒有幫助8、在數(shù)據(jù)分析中,若要比較不同組數(shù)據(jù)的離散程度,以下哪個(gè)指標(biāo)可以使用?()A.方差B.均值C.中位數(shù)D.眾數(shù)9、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)倉庫設(shè)計(jì),假設(shè)要構(gòu)建一個(gè)企業(yè)級的數(shù)據(jù)倉庫來支持決策制定。以下哪個(gè)設(shè)計(jì)原則可能對于數(shù)據(jù)的存儲(chǔ)、管理和查詢性能至關(guān)重要?()A.規(guī)范化設(shè)計(jì),減少數(shù)據(jù)冗余B.維度建模,便于分析和查詢C.分布式存儲(chǔ),提高可擴(kuò)展性D.不設(shè)計(jì)數(shù)據(jù)倉庫,直接使用原始業(yè)務(wù)數(shù)據(jù)庫10、在數(shù)據(jù)分析中,數(shù)據(jù)可視化不僅可以用于展示結(jié)果,還可以用于探索數(shù)據(jù)。假設(shè)要通過可視化探索兩個(gè)變量之間的關(guān)系,以下關(guān)于數(shù)據(jù)可視化探索的描述,哪一項(xiàng)是不正確的?()A.散點(diǎn)圖可以直觀地顯示兩個(gè)變量之間的線性或非線性關(guān)系B.熱力圖可以用于展示兩個(gè)變量在不同取值下的頻率或密度C.數(shù)據(jù)可視化探索只是輔助手段,不能替代統(tǒng)計(jì)分析和建模D.可以通過不斷調(diào)整可視化的參數(shù)和形式,發(fā)現(xiàn)數(shù)據(jù)中隱藏的模式和趨勢11、在進(jìn)行數(shù)據(jù)分析時(shí),特征工程對于模型的性能有著重要影響。假設(shè)你正在處理一個(gè)預(yù)測房價(jià)的數(shù)據(jù)集,包含房屋面積、房間數(shù)量、地理位置等特征。以下關(guān)于特征工程的操作,哪一項(xiàng)是最需要謹(jǐn)慎處理的?()A.對數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,使其具有相同的量綱B.將地理位置轉(zhuǎn)換為經(jīng)緯度數(shù)值,并作為新的特征C.基于現(xiàn)有特征創(chuàng)建新的交互特征,如房屋面積與房間數(shù)量的乘積D.隨意刪除一些看起來不重要的特征,以簡化模型12、當(dāng)分析一個(gè)網(wǎng)站的用戶訪問數(shù)據(jù),包括頁面瀏覽量、停留時(shí)間、跳出率等,以改進(jìn)網(wǎng)站的用戶體驗(yàn)和布局設(shè)計(jì)。為了確定哪些頁面需要重點(diǎn)優(yōu)化,以下哪個(gè)指標(biāo)可能是最有價(jià)值的?()A.頁面瀏覽量B.平均停留時(shí)間C.跳出率D.以上都是13、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)量可以幫助我們更好地理解數(shù)據(jù)。關(guān)于均值、中位數(shù)和眾數(shù),以下描述錯(cuò)誤的是:()A.均值容易受到極端值的影響B(tài).中位數(shù)是將數(shù)據(jù)排序后位于中間位置的數(shù)值C.眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)值,一定唯一D.對于偏態(tài)分布的數(shù)據(jù),中位數(shù)可能比均值更能反映數(shù)據(jù)的中心位置14、在數(shù)據(jù)分析中,空間數(shù)據(jù)分析用于處理與地理位置相關(guān)的數(shù)據(jù)。假設(shè)要分析不同地區(qū)的犯罪率分布,以下關(guān)于空間數(shù)據(jù)分析的描述,哪一項(xiàng)是不正確的?()A.可以使用空間自相關(guān)分析來研究犯罪率在空間上的聚集或分散情況B.地理信息系統(tǒng)(GIS)為空間數(shù)據(jù)分析提供了強(qiáng)大的工具和平臺C.空間數(shù)據(jù)分析只適用于宏觀尺度的研究,如國家或省份層面,不適用于微觀尺度的分析D.考慮空間權(quán)重矩陣可以更準(zhǔn)確地捕捉空間關(guān)系對數(shù)據(jù)分析的影響15、數(shù)據(jù)分析師在處理數(shù)據(jù)時(shí),需要考慮數(shù)據(jù)的來源和可靠性。假設(shè)我們從多個(gè)渠道收集了關(guān)于市場趨勢的數(shù)據(jù)。以下關(guān)于數(shù)據(jù)來源的描述,哪一項(xiàng)是錯(cuò)誤的?()A.官方統(tǒng)計(jì)數(shù)據(jù)通常具有較高的權(quán)威性和可靠性B.網(wǎng)絡(luò)爬蟲獲取的數(shù)據(jù)可能存在偏差和錯(cuò)誤,需要謹(jǐn)慎使用C.內(nèi)部數(shù)據(jù)庫中的數(shù)據(jù)一定是準(zhǔn)確和完整的,無需進(jìn)行驗(yàn)證D.不同來源的數(shù)據(jù)可能存在格式和定義上的差異,需要進(jìn)行統(tǒng)一和整合16、在數(shù)據(jù)分析中,若要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,以下哪種方法較為常見?()A.Z-score標(biāo)準(zhǔn)化B.Min-Max標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是17、在進(jìn)行關(guān)聯(lián)分析時(shí),如果兩個(gè)商品的支持度很高,但置信度很低,說明:()A.這兩個(gè)商品經(jīng)常被同時(shí)購買,但這種關(guān)聯(lián)不是很可靠B.這兩個(gè)商品很少被同時(shí)購買,但一旦同時(shí)購買,關(guān)聯(lián)很強(qiáng)C.這種關(guān)聯(lián)是虛假的,沒有實(shí)際意義D.無法得出明確的結(jié)論18、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的步驟包括數(shù)據(jù)清洗、轉(zhuǎn)換和歸一化等。假設(shè)我們要對一組數(shù)值型數(shù)據(jù)進(jìn)行預(yù)處理。以下關(guān)于數(shù)據(jù)預(yù)處理的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)轉(zhuǎn)換可以將數(shù)據(jù)映射到不同的范圍或格式,便于后續(xù)分析B.歸一化可以將數(shù)據(jù)縮放到相同的范圍,避免不同量級數(shù)據(jù)的影響C.數(shù)據(jù)預(yù)處理對數(shù)據(jù)分析的結(jié)果影響不大,可以隨意進(jìn)行D.對于離群點(diǎn),可以采用截?cái)嗷騑insorize等方法進(jìn)行處理19、在數(shù)據(jù)預(yù)處理階段,對于含有大量缺失值的數(shù)據(jù),以下哪種處理方法不一定合適?()A.直接刪除含有缺失值的記錄B.用均值、中位數(shù)或眾數(shù)來填充缺失值C.通過建立模型來預(yù)測缺失值D.對缺失值不做任何處理20、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)能有效描述數(shù)據(jù)特征。假設(shè)要分析一組學(xué)生考試成績的集中趨勢和離散程度,以下關(guān)于統(tǒng)計(jì)指標(biāo)選擇的描述,正確的是:()A.僅使用平均數(shù)來描述成績的集中趨勢,忽略中位數(shù)和眾數(shù)B.用方差衡量離散程度,但不考慮標(biāo)準(zhǔn)差C.同時(shí)采用平均數(shù)、中位數(shù)和眾數(shù)來描述集中趨勢,并結(jié)合標(biāo)準(zhǔn)差和方差衡量離散程度D.隨意選擇一個(gè)統(tǒng)計(jì)指標(biāo),不考慮其適用場景和數(shù)據(jù)特點(diǎn)二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋層次聚類算法的原理和步驟,說明其與其他聚類算法的區(qū)別和適用場景,并舉例說明其在實(shí)際數(shù)據(jù)中的應(yīng)用。2、(本題5分)解釋生存分析的概念和應(yīng)用場景,說明其主要的分析方法和指標(biāo),如生存函數(shù)、風(fēng)險(xiǎn)函數(shù)等。3、(本題5分)簡述數(shù)據(jù)分析師應(yīng)具備的技能和知識體系,包括統(tǒng)計(jì)學(xué)、編程、業(yè)務(wù)理解等方面,并說明如何不斷提升這些能力。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線健身課程平臺擁有課程銷售數(shù)據(jù)、用戶鍛煉目標(biāo)、課程完成率等。設(shè)計(jì)更有效的健身課程和激勵(lì)機(jī)制。2、(本題5分)某社交媒體平臺記錄了用戶的登錄時(shí)間、發(fā)布內(nèi)容類型、互動(dòng)行為等數(shù)據(jù)。研究用戶的活躍時(shí)間段和內(nèi)容偏好,為平臺優(yōu)化功能和推薦內(nèi)容提供依據(jù)。3、(本題5分)某智能家居公司掌握了產(chǎn)品銷售數(shù)據(jù)、用戶使用習(xí)慣、售后反饋等。改進(jìn)產(chǎn)品功能和服務(wù),滿足用戶對智能家居的需求。4、(本題5分)一家在線教育機(jī)構(gòu)積累了學(xué)生的學(xué)習(xí)課程、學(xué)習(xí)時(shí)長、考試成績等數(shù)據(jù)。探討學(xué)生的學(xué)習(xí)行為與成績之間的關(guān)系,為優(yōu)化課程設(shè)計(jì)和教學(xué)方法提供支持。5、(本題5分)某網(wǎng)約車平臺收集了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論