




已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
Suspension performance testing The suspension system, while not absolutely essential to the operation of a motor vehicle, makes a big difference in the amount of pleasure experienced while driving. Essentially, it acts as a bridge between the occupants of the vehicle and the road they ride on. The term suspension refers to the ability of this bridge to suspend a vehicles frame, body and powertrain above the wheels. Like the Golden Gate Bridge hovering over San Francisco Bay, it separates the two and keeps them apart. To remove this suspension would be like taking a cool dive from the Golden Gate: you might survive the fall, but the impact would leave you sore for weeks. Think of a skateboard. It has direct contact with the road. You feel every brick, crack, crevice and bump. Its almost a visceral experience. As the wheels growl across the pavement, picking up a bump here, a crack there, the vibration travels up your legs and settles in your gut. You could almost admit you were having fun, if you didnt feel like you were gonna toss your tacos at any second. This is what your car would feel like without a suspension system. In the interests of road safety, it is logical to include in periodic roadworthiness tests an inspection of vehicle suspension performance. The results of tests with a prototype machine are presented and a specification proposed for a valid suspension test. Demonstrations organized by the European Shock Absorbers Manufacturers Association ( EuSAMA) in many countries have drawn attention to the importance of correctly functioning shock absorbers. In the United Kingdom it is anticipate that the Department of the Environment will include a specific shock absorber check in the MOT Test with effect from January 1977. Of the machines currently available for testing shock absorbers without removing them from the vehicle, there is no real consensus of opinion concerning their validity to evaluate suspension safety objectively. But it is felt that possible more stringent legislation on European periodic vehicle tests in the future will demand a form of objective testing on equipment that is incapable of erroneous interpretation. Since its formation in 1971 EuSAMA has realized the imnportance of the problem, and initially charged its technical sub-committee with the task of examining and analyzing the various test machines then available. Two basic types of machine were offered at that time for diagnosing faulty shock absorbers. These were: Machines which lift up the wheels on an axle by about 100 mm and then let them drop. The subsequent displacements of the body on each side are recorded and the results compared with preset values for the particular vehicle and the suspension position, front or rear. Such a machine simulates a step input and records the subsequent body movements (see Fig 1). Machines which measure wheel movements induced by the exitation of the suspension through a frequency scan from above resonance frequency to zero, applied by means of a spring-supported platform under the tyre. Results are recorded in the form of wheel displacement against time. While passing through the wheel bounce resonant frequency the maximum amplitude is obtained and this is compared with preset values for the particular vehicle and the suspension position front or rear (see Fig 2). A third machine, introduced later, measures phase shift induced by the excitation of the suspension at a constant frequency and stroke, applied by means of a vibrating platform under the tyre. The phase shift between the moment of excitation and the force-reaction is recorded and the result is compared with preset values for the particular vehicle and suspension position (see Fig 3). These systems have three fundamental drawbacks: A: The actual damping is compared with the original damping the limit being a certain degradation in comparison with the original performance. The original performance, however, can already be marginal. B: The problems of limit setting, namely by whom should the limits be set and what are the criteria they should about? At present there is hardly any relation between set limits and acceptable performance in practice. C: The practical problem of various limits for different vehicle types and their suspensions. This requires comprehensive reference manuals that need continuously updating. Despite these fundamental drawbacks, examples of the ? widely used test machines were put through their paces by the Automotive Engineers Laboratory of the University of Ghent, as well as by several EuSAMA members. As expected, the first conclusion is that no test method which does not include dismantling the shock absorbers from the vehicle is able to furnish information concerning the shock absorber alone, and it is in fact the whole of the vehicle suspension system that is tested. This can be considered as a positive aspect of testing, since the whole of the suspension should be in good condition for safety; although the shock absorber is the component most likely to deteriorate with use, other defects such as incorrectly inflated tyres, broken springs or seized ball-joins should if possible be diagnosed. Of the other factors which influenced test results it was found that all machines gave results that were much affected by shock absorber temperature. In the case of the drop type testing machines, defects in shock absorbers caused by high frequency excitation could not be detected. With the frequency scan type of machine, approximately constant force input implies a big difference in results between vehicles with soft or hard suspension, so that changes in springs from normal to heavy duty (which the operator may be incapable of identifying ) can considerable affect the result. Each make of machine had its own characteristics, but as the basic test principles were considered to be unacceptable these details will not be presented here. After due consideration the technical sub-committee advised the General Assembly of EuSAMA that although the existing machines, when correctly operated, could help to diagnose many faulty shock absorbers, a responsible association could not authorize such equipment as the parameters measured were not considered technically representative of any particular aspect of roadworthiness. Taking brake testing as an example, it was noted that test machines give a direct reading of braking efficiency as a percentage of g without the need to identify vehicle type or to use reference manuals. Similarly, minimum braking performance levels can be set for all automobiles irrespective of model, so that a customer knows immediately if his brakes need attention, Some machines show brake imbalance, but do not indicate which component is faulty. Applying the same principles to vehicle suspension, it should be possible to propose a test which furnishes a direct reading as a value or preferably as a percentage, to indicate whether a suspension is considered satisfactory from the viewpoint of safety. Moreover, this must be achieved objectively, that is to say without need of any identification, interpretation or reference to manuals by the test operator. The technical sub-committee therefore looked for a parameter which could be considered a suitable criterion of safety in relation to vehicle suspension. As stated earlier, there is only one component normally subject to deterioration with use the shock absorber. So the role of the shock absorbers must first be defined. These have two functions to perform: to damp the movement of the vehicle body on its springs and to control wheel bounce. The permitted movement of a vehicle body on its springs is very much a matter of taste, and it is largely in the control of such movement that a sports shock absorber differs in damping characteristics from a shock absorber aimed at optimum comfort. The movement of a body on its springs does, of course, materially influence roadholding but in reality few ordinary drivers are capable of reaching the limits of the modern car in this respect, so the value of body damping is relatively unimportant for safety measurements. In any case, most drivers of a vehicle with poor body damping will quickly limit their speed and manoeuvres to the vehicles handling capacity. Wheel bounce, on the other hand, is a measurable phenomenon and the dangers of vehicles with uncertain wheel contact are well known. Both cornering and braking performance are well known. Both cornering and braking performance are limited by tyre anherence to the road; this is dependent on the vertical wheel contact as well as the tyres own properties. A parameter which permits the objective measurement of one aspect of roadholding, and therefore of vehicle suspension safety, was thus isolated but it was still necessary to be able to express it in terms that could be readily interpreted.It was proposed, therefore, to measure the minimum remaining vertical contact force between tyre and road under a given excitation at wheel-bounce frequency and to express it as a percentage of the static wheel load. Such a possibility was discussed at a meeting between the technical sub-committee and Dr Verschoore of the University of Ghent. A general concensus of opinion in favour of such a test was reached, though some members expressed doubts concerning the possibility of measuring this parameter in practice, as well as doubts concerning the results Aparamet。 . At a later date the sub-committee was informed that a prototype machine of German origin, using approximately the principle outlined above, had been submitted for evaluation to the University of Ghent. After certain recommended modifications had been performed, tests by both the University of Ghent and a member company of EuSAMA demonstrated the possibilities of such a test, and amply justified the technical sub-committees decision concerning the parameter to be measured. Details are given below of the tests performed and the results obtained on a prototype machine, developed by Maschingfabrik Koppern & Co, Hattingen, West Germany, and presented by courtesy of S A Monroe International, Brussels, Belgium. The machine (see Fig 4) Wheel movement is induced by excitation of the suspension through a frequency scan from about 25 Hz to 0, applied by a platform under the tyre, moving with a fixed stroke of 6 mm. One wheel is tested at a time. Results are recorded in the form of Minimum dynamic wheel load *100% Static wheel load The testers analogue read-out showed deviations from the maximum dynamic force indicated on the oscilloscope. Test readings are compared with the impressions of an experienced test driver because no scientific test method for roadworthiness has yet been approved. The final determination of roadworthiness and vehicle comfort is still done by vehicle manufactures by the subjective assessment of one or more experienced test drivers. The test method outlined below will indicate in nearly all cases whether a vehicle suspension is roadworthy or not. Nevertheless, a visuall inspection of the suspension elements is recommended in addition to the performance test, as incipient failures can sometimes be detected visually before performance deteriorates. Secondly, the test is of the vehicle suspension, wheel by wheel, and will indicate only whether there is a fault; it will not locate the fault, though a skilled operator may be able to diagnose certain defects from the test read-out. Obviously there is a requirement to design a machine able to detect when a certain percentage of static friction is exceeded. Development work in this area is still required. While there have been enhancements and improvements to both springs and shock absorbers, the basic design of car suspensions has not undergone a significant evolution over the years. But all of thats about to change with the introduction of a brand-new suspension design conceived by Bose - the same Bose known for its innovations in acoustic technologies. Some experts are going so far as to say that the Bose suspension is the biggest advance in automobile suspensions since the introduction of an all-independent design. How does it work? The Bose system uses a linear electromagnetic motor (LEM) at each wheel in lieu of a conventional shock-and-spring setup. Amplifiers provide electricity to the motors in such a way that their power is regenerated with each compression of the system. The main benefit of the motors is that they are not limited by the inertia inherent in conventional fluid-based dampers. As a result, an LEM can extend and compress at a much greater speed, virtually eliminating all vibrations in the passenger cabin. The wheels motion can be so finely controlled that the body of the car remains level regardless of whats happening at the wheel. The LEM can also counteract the body motion of the car while accelerating, braking and cornering, giving the driver a greater sense of control. Unfortunately, this paradigm-shifting suspension wont be available until 2009, when it will be offered on one or more high-end luxury cars. Until then, drivers will have to rely on the tried-and-true suspension methods that have smoothed out bumpy rides for centuries. 懸 架性能測試 懸架系統(tǒng)雖不是汽車運行不可或缺的部件,但有了它人們可以獲得更佳的駕駛感受。簡單的說,它是車身與路面之見的橋梁。 懸架的行程涉及到懸浮于車輪之上的車架,傳動系的相對位置。就像橫跨于舊金山海灣之上的金門大橋,它連接 了海灣兩側。去掉汽車上的懸架就像是你做一次冷水潛泳通過海灣一樣,你可以平安的渡過整個秋天,但會疼痛會持續(xù)幾周之久。 想想滑板吧!它直接接觸路面你可以感受到每一塊磚,裂隙及其撞擊。這簡直就是一種令人全身都為之震顫的體驗。當輪子滑過路面時,就會在此產(chǎn)生震動,沖擊,這種震動的旅程時對你的身體和勇氣的檢驗。如果你沒感到隨時都有被掀翻之勢,那么你或許會樂在其中吧!這就是你會在沒有懸架的汽車上將會體驗到的。 為了道路交通安全,包括定期檢查車輛暫停行駛性能測試是順理成章的事。原型試驗結果與機載和規(guī)格提出有效懸架系統(tǒng)的測試 。 示威活動是由歐洲減震器制造商協(xié)會 (EUSAMA),正確運作減震器已經(jīng)引起了許多國家重視 .。估計英國早在 1977 年 1 月起,環(huán)境部就進行了檢查減震器的 MOT測試。 現(xiàn)在減震器機車里的測試儀器,就其實質效力及安全的客觀評價就沒有達到共識 .。但人們認為,歐洲可能用更嚴厲的法律手段定期檢驗將來的一 種 客觀需求測試設備無法解釋的錯誤。 自 1971 年成立, EuSAMA 就認識到了該問題的重要性,并組成了最初的技術小組,負責研究和分析測試儀器。 有兩個基本類型的機器提供了當時減震器故障診斷。包括: 1. 吊機,在軸的車輪約 100 毫米處,然后讓它們落下。接著記下他們各自的位置,然后和預定的前方或后方車輛暫停位置比較。這種模擬機向前邁了一大步,并記錄了實體運動情況 (參看圖 1). 這些措施調動機輪,引發(fā)暫停,從上述共振頻率為零位置掃描。采用了支持平臺下的輪胎 .。成績記錄結果與車輪時間不符。 同時,把車輪彈跳沉最高頻率和前方或后方的特殊車輛預定暫停位置進行比較。 下面要介紹的第三種機器,通過應用組件的平臺下輪胎,引發(fā)了暫?;虿粩嗟念l率階段措施。時刻激勵部隊記錄結果,并和特殊車輛預定的暫停位置比較。 這些系統(tǒng)有三個基本的缺點: .與 原來的阻尼表現(xiàn)比較而言,實際的阻尼出現(xiàn)了一定的退化。 原來的表現(xiàn),已經(jīng)是在邊緣了。 .設定上限的問題,即應該由誰來定限額的標準應該是什么呢 ? 目前在實踐中設定的范圍和可接受表現(xiàn)之間幾乎沒有任何關系 .對不同類型的車輛的懸架系統(tǒng)和實際存在的各種各樣的中斷,它們的界限會有所差別。這就需要全面參考手冊并不斷更新。 盡管該系統(tǒng)有這些根本的弊端,但是他們的根特大學實驗室工程師,以及幾位 Eusama 成員已經(jīng)開始使用測試儀器。正如所料,第一個結論是,沒有檢驗方法是可以不包括拆除汽車減震器就能夠提供有關資料和減震器單的 ,但實際上整個汽車停止系統(tǒng)是通過了測試 .。這可以說是一個積極的方面測試,全部停止安全狀況應當是良好的; 盡管減震器最有可能進一步部分使用惡化,其他缺點如夸大輪胎,或處理破城球,如果可能的話,應給予診斷。 其他影響測試結果的因素中,氣溫減震器影響所有機器給出的結果。對于下降型試驗機減震器缺陷造成的高頻激勵是不能察覺的。 頻率掃描型機器的出現(xiàn),持續(xù)的投入意味著在用軟或硬中斷的車輛之間差別很大。因此從太空正常到重型任務的改變 (操作可能無法識別 )可以認為直接影響結果。 每一種機器的制造都有它自己的特征,但由于基本原 則,被認為是不可 接受的測試不會在這里出現(xiàn)。 充分考慮技術小組委員會建議 Eusama 的加入,雖然現(xiàn)有機器正確操作,可以診斷許多錯誤減震器、負責協(xié)會不能批準這種設備作為技術上代表某一方面性能的衡量參數(shù)。 以剎車測試為例,指出:測試儀器直接顯示制動效率的百分比,無需辨 別 車型或使用參考手冊 .。同樣,制
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 兒童健康交流會
- 教育與醫(yī)療的融合AI技術在醫(yī)學教育中的應用
- 創(chuàng)新課堂探索VR教育的應用場景與實踐案例
- 內(nèi)科呼吸系統(tǒng)總論
- 租賃倉庫應急預案方案
- 項目引入激勵方案模板
- 奧迪4S店新員工培訓
- 代收醫(yī)院擔架費用方案
- 農(nóng)村小屋購買協(xié)議書范本
- 高校法院共建協(xié)議書范本
- 搬遷項目臨時設施拆除與廢棄物處理合同
- 2025年食品安全知識考試試題庫及解析答案
- 小學一年級升二年級暑假數(shù)學作業(yè)-思維應用題訓練50題(附答案)
- 腹透患者健康指導
- 西安高新區(qū)管委會招聘考試真題2024
- 黨史知識競賽試題及答案
- 初中語文新課程標準試題及答案
- 宗教場所消防培訓課件
- 隧道建設施工進度計劃與工期保證措施
- 車工考評員培訓課件
- 2025年老年人能力評估師(三級)考試模擬試題(含答案)
評論
0/150
提交評論