已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1 1. Introduction 1.1. Scope This physical specification is intended to facilitate the point-to-point communication between electronic devices (e.g., computers and peripherals) using directed half duplex serial infrared communications links through free space. This document specifies the optical media interfaces for Serial Infrared (SIR) data transmission up to and including 115.2kbit/s, 0.576 Mbit/s, 1.152Mbit/s, 4.0Mbit/s and 16Mbit/s. It contains specifications for the Active Output Interface and the Active Input Interface, and for the overall link. It also contains Appendices covering test methods and implementation examples. Over the past several years several optical link specifications have been developed. This activity has established the advantages of optical interface specifications to define optical link parameters needed to support the defined link performance. Optical interface specifications are independent of technology, apply over the life of the link and are readily testable for conformance. The IrDA serial infrared link specification supports low cost optoelectronic technology and is designed to support a link between two nodes from 0 to at least 1 meter apart (20 cm for low power parts: please see Section 4.1) as shown in Figure 1 (the two ports need not be perfectly aligned). 1.2. References The following standards either contain provisions that, through reference in this text, constitute provisions of this proposed standard, or provide background information. At the time of publication of this document, the editions and dates of the referenced documents indicated were valid. However, all standards are subject to revision, and parties to agreements based on this proposed standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed below. IrDA (Infrared Data Association) Serial Infrared Link Access Protocol (IrLAP), Version 1.1, June 16, 1996. IrDA (Infrared Data Association) Serial Infrared Link Management Protocol, IrLMP), Version 1.1, January 23, 1996. IrDA (Infrared Data Association) Serial Infrared Physical Layer Measurement 2 Guidelines, Version 1.0, January 16, 1998. IrDA (Infrared Data Association) IrMC Specification, Version 1.0.1, January 10, 1998. 2. General Description 2.1. Point-to-Point Link Overview The serial infrared link supports optical link lengths from zero to at least 1 meter with standard power transceivers (20cm for low power transceivers: see section 4.1) for accurate (within specified bit error ratio), free space communication between two independent nodes (such as a calculator and a printer, or two computers). 2.2. Environment The Optical Interface Specifications apply over the life of the product and over the applicable temperature range for the product. Background light and electric field test conditions are presented in Appendix A. 2.3. Modulation Schemes For data rates up to and including 1.152Mbit/s, RZI modulation scheme is used, and a “0” is represented by a light pulse. For rates up to and including 115.2kbit/s, the optical pulse duration is nominally 3/16 of a bit duration (or 3/16 of a 115.2kbit/s bit duration).For0.576Mbit/s and1.152Mbit/s, the optical pulse duration is nominally 1/4 of a bit duration. For 4.0Mbit/s, the modulation scheme is 4PPM. In it, a pair of bits is taken together and called a data symbol. It is divided into 4 “chips”, only one of which contains an optical pulse. For 4.0Mbit/s, the nominal pulse duration (chip duration) is 125 ns. A “1” is represented by a light pulse. For 16.0Mbithe specified data rate. The HHH(1, 13) code guarantees for at least one empty chip and at most 13 empty chips between chips containing pulses in the transmitted IR signal. The 16.0Mbit/s rate packet frame structure is based on the current IrDA-FIR(4.0 Mbit/s) frame format with modifications introduced where necessary to accommodate the requirements that are specific to the new modulation code. Furthermore, the HHH(1,13) code is enhanced with a simple scrambling/ descrambling scheme to further optimize the duty cycle. 3. Media Interface Description 3.1. Physical Representation A block diagram of one end of a serial infrared link is shown in Figure 2. Additional signal paths may exist. Because there are many implementation alternatives, this specification only defines the serially encoded optical output and input signals at 3. In the diagram, the electrical signals to the left of the Encoder/Decoder at 1 are serial 3 bit streams. For data rates up to and including 1.152Mbit/s, the optical signals at 3 are bit streams with a "0" being a pulse, and a "1" is a bit period with no pulse. For 4.0Mbit/s, a 4PPM encoding scheme is used, with a “1” being a pulse and a “0” being a chip with no pulse. For 16.0Mbit/s, a HHH(1,13), (d,k) = (1,13) run length limited (RLL), low duty cycle, rate 2/3 modulation code is used. The HHH (1,13) code guarantees for at least one empty chip and at most 13 empty chips between chips containing pulses in the transmitted IR signal. A summary of pulse durations for all supported data rates appears in Table 2 in Section 4.1. The electrical signals at 2 are the electrical analogs of the optical signals at 3. For data rates up to and including 115.2kbit/s, in addition to encoding, the signal at 2 is organized into frames, each byte asynchronous, with a start bit, 8 data bits, and a stop bit. An implementation of this (up to 115.2kbit/s) is described in Appendix B. For data rates above 115.2kbit/s, data is sent in synchronous frames consisting of many data bytes. Detail of the frame format is found in Section 5. 3.2. Optical Angle Definitions The optical axis is assumed to be normal to the surface of the node's face that contains the optical port (See Figure 3). For convenience, the center of the optical port is taken as the reference point where the optical axis exits the port. If there is asymmetry, as long as the maximum half angle of the distribution is not greater than the allowable Half-Angle Range maximum, and the minimum half angle of the distribution is not less than the Half-Angle Range minimum, the Half-Angle Range specification is met. 4 4. Media Interface Specifications 4.1. Overall Links There are two different sets of transmitter/receiver specifications. The first, referred to as Standard, is for a link which operates from 0 to at least 1 meter. The second, referred to as the Low Power Option, has a shorter operating range. There are three possible links (See Table 1 below): Low Power Option to Low Power Option, Standard to Low Power Option; Standard to Standard. The distance is measured between the optical reference surfaces. The Bit Error Ratio (BER) shall be no greater than 10-8. The link shall operate and meet the BER specification over its range. Signaling Rate and Pulse Duration: An IrDA serial infrared interface must operate at 9.6kbit/second. Additional allowable rates listed below are optional. Signaling rate and pulse duration specifications are shown in Table 2. For all signaling rates up to and including 115.2kbit/s the minimum pulse duration is the same (the specification allows both a 3/16 of bit duration pulse and a minimum pulse duration for the 115.2kbit/s signal (1.63 microseconds minus the 0.22 microsecond tolerance). The maximum pulse duration is 3/16 of the bit duration, plus the greater of the tolerance of 2.5% of the bit duration, or 0.60 microseconds. For 0.576Mbit/s and 1.152Mbit/s, the maximum and minimum pulse durations are the nominal 25% of the bit duration plus 5% (tolerance) and minus 8% (tolerance) of the bit duration. For 4.0Mbit/s, the maximum and minimum single pulse durations are the nominal 25% of the symbol duration plus and minus a tolerance of 2% of the symbol duration. For 4.0Mbit/s, the maximum and minimum double pulse durations are 50% of the 5 symbol plus and minus a tolerance of 2% of the symbol duration. Double pulses may occur whenever two adjacent chips require a pulse. For 16Mbit/s, the maximum and minimum single pulse durations are the nominal symbol duration plus and minus a tolerance of 8% of the nominal symbol duration. The link must meet the BER specification over the link length range and meet the optical pulse constraints. In order to guarantee non-disruptive coexistence with slower (115.2kbit/s and below) systems, once a higher speed (above 115.2kbit/s) connection has been established, the higher speed system must emit a Serial Infrared Interaction Pulse (SIP) at least once every 500 ms as long as the connection lasts to quiet start pulse, causing the potentially interfering system to listen for at least 500 ms. See Section 5.2. The specified values for Rise Time Tr, Fall Time Tf, and Jitter are listed in Table 3. Link Access and Management Control protocols are covered in separate specification documents (see Section 1.2., References). 4.2. Active Output Interface At the Active Output Interface, an infrared signal is emitted. The specified Active Output Interface parameters appearing in Table 3 are defined in section 1.4 and the associated test methods are found in Appendix A. Std refers to the standard 0 to 1 meter link; LP refers to the Low Power Option; Both refers to both. 6 4.3. Active Input Interface If a suitable infrared optical signal impinges upon the Active Input Interface, the signal is detected, conditioned by the receiver circuitry, and output to the IR Receive Decoder. The specified Active Input Interface parameters appearing in Table 4 are defined in section 1.4. The test methods for determining the values for a particular serial infrared interface are found in Appendix A. There is no Half-Angle maximum value for the Active Input Interface. The link must operate at angles from 0 to at least 15 degrees. There are no Active Input Interface Jitter specifications, beyond that implied in the Active Output Requirements. The link must meet the BER specification for all negotiated and allowable combinations of Active Output Interface specifications, except for non-allowed codes. For rates up to and including 115.2kbit/s, the allowed codes are described in Infrared Data Association Serial Infrared Link Access Protocol (IrLAP), and Infrared Data Association Link Management Protocol. See Section 1.2, References. For 0.576Mbit/s and 1.152Mbit/s and 4.0 Mbit/s, see Section 5 of this document. 5. 0.576Mbit/s, 1.152Mbit/s, 4.0Mbit/s and 16.0Mbit/s Modulation and Demodulation 5.1. Scope 7 This section covers data modulation and demodulation above 115.2kbit/s up to 16.0Mbit/s data rates. The0.576Mbit/s and 1.152Mbit/s rates use an encoding scheme similar to 115.2 kbit/s; the 4.0Mbit/s rate uses a pulse position modulation (PPM) scheme. Both cases specify packet format, data encoding, cyclic redundancy check, and frame format for use in communications systems based on the optical interface specification. The 16.0Mbit/s rate uses the HHH(1,13) encoding scheme with the CRC check and frame format of 4.0Mbit/s rate with necessary modfications to the frame format for the new modulation code. Systems operating at these higher rates are transparent to IrLAP and IrLMP as it is defined for the lower rates. Architecturally, it appears as an alternate modulation/demodulation (modem) path for data from IrLAP bound for the IR medium. These higher rates are negotiated during normal IrLAP discovery processes. For these and specific discovery bit field definitions of the higher rates, see documents referenced in Section 1.2. 5.2. Serial Infrared Interaction Pulses In order to guarantee non-disruptive coexistence with slower (up to 115.2kbit/s) systems, once a higher speed (above 115.2kbit/s) connection has been established, the higher speed system must emit a Serial infrared Interaction Pulse (SIP) at least once every 500 ms as long as the connection lasts to quiet slower systems that might interfere with the link (see Section 4.1). The pulse can be transmitted immediately after a packet has been transmitted. The pulse is shown below: 5.3. 0.576Mbit/s and 1.152Mbit/s Rates 5.3.1. Encoding The 0.576Mbit/s and 1.152Mbit/s encoding scheme is similar to that of the lower rates except that it uses one quarter pulse duration of a bit cell instead of 3/16, and uses HDLC bit stuffing after five consecutive ones instead of byte insertion. The following illustrates the order of encoding. 1) The raw transmitted data is scanned from the least significant to the most significant bit of each byte sent and a 16 bit CRC-CCITT is computed for the whole frame 8 except flags and appended at the end of data. The CRC-CCITT polynomial is defined as follows: (For an example refer to the 32 bit CRC calculation in section 5.4.2.5 and adjust the polynomial for the one indicated above and note the size will be 16 bits (2 bytes) instead of 32 bits (4 bytes) , note preset to all 1s and inversion of the outgoing CRC value) (The address and control field are considered as part of data in this example.) For example, say four bytes, CChex, F5hex, F1hex, and A7hex, are data to be sent out in sequence, then 51DFhex is the CRC-CCITT. LSB MSB Raw Data 00110011 10101111 10001111 11100101 LSB MSB Data/CRC 00110011 10101111 10001111 11100101 11111011 10001010 2) A Zero is inserted after five consecutive ones are transmitted in order to distinguish the flag from data. Zero insertion is done on every field except the flags. Using the same data as an example; LSB MSB Data/CRC 00110011 10101111 10001111 11100101 11111011 10001010 First bit to be transmitted Last bit to be transmitted Transmit Data 001100111010111110000111110110010111110101110001010 (Note: Underlined zeros are inserted bits.) 3)The beginning and ending flags, 7Ehex, are appended at the beginning and end. Using the same example; Transmit Data First bit to be transmitted Last bit to be transmitted 0111111000110011101011111000011111011001011111010111000101001111110 4) An additional beginning flag is added at the beginning. Finally the whole frame to be sent out is: Tx Frame First bit to be transmitted 0111111001111110001100111010111110000111110110010111110101110001 9 Last bit to be transmitted 01001111110 5) The transmitter sends out 1/4-bit-cell-length pulse of infrared signal whenever data is zero. For example, the frame to be sent out is 0100110101 in binary in the order of being transmitted, then the following figure illustrates the actually transmitted signal for lower data rates and also for 0.576 and 1.152Mbit/s. 5.3.2. Frame Format 5.3.2.1. Frame Overview The 0.576 Mbit/s and 1.152 Mbit/s frame format follows the standard HDLC format except that it requires two beginning flags and consists of two beginning flags, an address field, a control field, an information field, a frame check sequence field and minimum of one ending flag. 7Ehex is used for the beginning flag as well as for the ending flag. The frame format is the same as for the lower rate IrLAP frame with STA changed from C0hex to 7Ehex and STO changed from C1hex to 7Ehex. STA: Beginning Flag, 01111110 binary ADDR: 8 bit Address Field DATA: 8 bit Control Field plus up to 2045 = (2048 - 3) bytes Information Field FCS: CCITT 16 bit CRC STO: Ending Flag, 01111110 binary Note 1: Minimum of three STO fields between back to back frames is required. Note 2: Zero insertion after five consecutive 1's is used. CRC is computed before zero insertion is performed. Note 3: Least significant bit is transmitted first. Note 4: Abort sequence requires minimum of seven consecutive 1s. Note 5: 8 bits are used per character before zero insertion. 5.3.2.2. Beginning Flag (STA) and Ending Flag (STO) Definition The 0.576 Mbit/s and 1.152 Mbit/s links use the same physical layer flag, 01111110, for both STA and STO. It is required to have a minimum of two STAs and a minimum of 10 one STO. The receiver treats multiple STAs or STOs as a single flag even if it receives more than one. 5.3.2.3. Address Field (ADDR) Definition The 0.576 Mbit/s and 1.152 Mbit/s links expect the first byte after STA to be the 8 bit address field. This address field should be used as specified in the IrLAP. 5.3.2.4. Data Field (DATA) Definition The data field consists of Control field and optional information field as defined in the IrLAP. 5.3.2.5. Frame Check Sequence Field (FCS) Definition The 0.576 Mbit/s and 1.152 Mbit/s links use a 16 bit CRC-CCITT cyclic redundancy check to check received frames for errors that may have been introduced during frame transmission. The CRC is computed from the ADDR and Data fields using the same algorithm as specified in the IrLAP. 5.3.2.6. Frame Abort A prematurely terminated frame is called an aborted frame. The frame can be aborted by blocking the IR transmission path in the middle of the frame, a random introduction of infrared noise, or intentional termination by the transmitter. Regardless what caused the aborted frame, the receiver treats a frame as an aborted frame when seven or more consecutive ones (no optical signal) are received. The abort terminates the frame immediately without the FCS field or an ending flag. 5.3.2.7. Frame Transmission Order All fields are transmitted the least significant bit of each byte first. 5.3.2.8. Back to Back Frame Transmission Back to back, or “brick-walled” frames are allowed with three or more flags, 01111110b, in between. If two consecutive frames are not back to back, the gap between the last ending flag of the first frame and the STA of the second frame should be separated by at least seven bit durations (abort sequence). 5.4. 4 Mbit/s Rate 5.4.1. 4PPM Data Encoding Definition Pulse Position Modulation (PPM) encoding is achieved by defining a data symbol duration (Dt) and subsequently subdividing Dt into a set of equal time slices called "chips." In PPM schemes, each chip position within a data symbol represents one of the possible bit combinations. Each chip has a duration of Ct given by: Ct = Dt/Base In this formula "Base" refers to the number of pulse positions, or chips, in each data symbol. The Base for IrDA PPM 4.0 Mbit/s systems is defined as four, and the resulting modulation scheme is called "four pulse position modulation (4PPM)." The data rate of 11 the IrDA PPM system is defined to be 4.0 Mbit/s. The resulting values for Ct and Dt are as follows: Dt = 500 ns Ct = 125 ns The figure below describes a data symbol field and its enclosed chip durations for the 4PPM scheme. Because there are four unique chip positions within each symbol in 4PPM, four independent symbols exist in which only one chip is logically a "one" while all other chips are logically a "zero." We define these four unique symbols to be the only legal data symbols (DD) allowed in 4PPM. Each DD represents two bits of payload data, or a single "data bit pair (DBP)", so that a byte of payload data can be represented by four DDs in sequence. The following table defines the chip pattern representation of the four unique DDs defined for 4PPM. Logical “1” represents a chip duration when the transmitting LED is emitting light, while logical “0” represents a chip duration when the LED is off. 12 紅外數(shù)據(jù)協(xié)會(huì)的一系列紅外物理層規(guī)則 1. 介紹 1.1 范圍 這個(gè)規(guī)則將會(huì)使電子設(shè)備之間的點(diǎn)對(duì)點(diǎn)通信便利化(舉例來說,計(jì)算機(jī)和外圍設(shè)備),這種電子設(shè)備用半雙工串行接口通過空間來連接。這一份文件證明光學(xué)介質(zhì)串行接口 數(shù)據(jù)傳輸速率已提高到 115.2kbit/s, 0.576Mbit/s, 1.152Mbit/s,4.0Mbit/s 和 16Mbit/s。它包括輸入端接口和輸出端接口的說明 ,和所有的連接。它也附加了測(cè)試方法和相關(guān)例子。 在過去的許多年里光學(xué)連接規(guī)則已發(fā)展成熟了許多,這一個(gè)活動(dòng)已經(jīng)確定了光學(xué)接口規(guī)格的優(yōu)點(diǎn)以便用來定義光學(xué)連接叁數(shù),這些參數(shù)用來支持被定義的連接性能。光學(xué)的接口規(guī)格與技術(shù)無關(guān) ,適用于生活中的所有連接并且是可以測(cè)試的。 IrDA 紅外連接支持低成本的 optoelectronic 技術(shù)而且支持從 0 到至少 1 公尺處 ;兩點(diǎn)之間的連接(對(duì)于低能量為 20cm:見第 4.1 節(jié) )如圖 1(兩點(diǎn)可以不按順序排列) 圖 1 光學(xué)接口的幾何原理圖形 1.2.叁考 下列的標(biāo)準(zhǔn)或者包含一些條款,在本文中作為參考的標(biāo)準(zhǔn)或者用來提供背景數(shù)據(jù)。這份文件自出版后就是有效的。所有的標(biāo)準(zhǔn)都是經(jīng)過校訂的,部分以這個(gè)標(biāo)準(zhǔn)為基礎(chǔ)的協(xié)議在下面列出,被用做最新版本的參考。 IrDA(紅外線數(shù)據(jù)協(xié)會(huì) )的建立連接協(xié)議層 (IrLAP),1.1版, 1996年 6月 16日出連接長度 節(jié)點(diǎn) 1 節(jié)點(diǎn) 2 光學(xué)接口點(diǎn) 13 版。 IrDA(紅外線的數(shù)據(jù)協(xié)會(huì) )連接管理協(xié) 議層( IrLMP) ,1196年 1月 23出版 1.1版。 IrDA(紅外數(shù)據(jù)協(xié)會(huì))物理層標(biāo)準(zhǔn)指導(dǎo)方針 1.0 版 ,1998 年 1月 16日出版。 IrDA(紅外線的數(shù)據(jù)協(xié)會(huì) )IrMC規(guī)格, 1.0.1版, 1998年 1月 10日。 2. 一般描述 2.1. 點(diǎn)對(duì)點(diǎn)的連接 串行接口連接支持光學(xué)連接長度至少為 1公尺(在指定的誤差范圍內(nèi))的標(biāo)準(zhǔn)收發(fā)器(對(duì)于低能量為 20cm)兩個(gè)點(diǎn)之間的空間傳輸 (像是一個(gè)計(jì)算機(jī)和一臺(tái)打印機(jī) ,或二部計(jì)算機(jī) ). 2.2. 環(huán)境 光學(xué)的接口規(guī)格在產(chǎn)品壽命期和適用溫度方面是適用的。附錄 A是背景光和電場(chǎng)測(cè) 試情況。 2.3. 調(diào)制原理 數(shù)據(jù)傳輸率最高達(dá)到 1.152Mbit/s,使用 RZI調(diào)制,“ 0”用光脈沖表示,波特率在 1.152Mbit/s以下時(shí),用最大脈沖寬度是位周期的 3/16來調(diào)制,速率為 0.576 Mbit/s和 1.152Mbit/s時(shí)用最大脈沖寬度是位周期的 1/4來調(diào)制。對(duì)于 4.0 Mbit/s,用 4PPM(脈沖位置調(diào)制)調(diào)制。在它里面,兩個(gè)比特位被編碼成一個(gè)“數(shù)據(jù)符號(hào)位”,每個(gè)符號(hào)位分為 4等份,只有一份包含光脈沖,對(duì)于 4.0Mbit/s,光脈沖寬度為 125ns,每個(gè)“ 1”靠一個(gè)光脈沖傳送。對(duì)于 16.0Mbit/ s ,它是依靠于 IrDA-FIR( 4.0 Mbit/s)已包含有許多字節(jié)的數(shù)據(jù)包傳輸,根據(jù)特定的需求來修改編碼。此外, HHH(1,13) 編碼與簡單的混合一起更進(jìn)一步的將有效周期最優(yōu)化。 3. 媒體接口描述 3.1. 物理層描述 圖 2為紅外連接的框圖,可能存在其他的信號(hào)路徑。因?yàn)橛性S多其他傳輸,這一件規(guī)格只定義被編碼后的光學(xué)輸出和在 3處的輸入信號(hào)。在圖表中 , 編碼 14 器 / 譯碼器左邊的電信號(hào)在 1 是連續(xù)數(shù)據(jù),波特率高于 1.152Mbit/s,在 3處,光學(xué)信號(hào)“ 0”是一個(gè)脈沖,“ 1” 沒有脈沖。對(duì)于 4.0Mbit/s,用 4PPM編碼,“ 1”用一個(gè)脈沖表示,“ 0”是一個(gè)時(shí)隙但沒有脈沖。對(duì)于 16.0Mbit/s, HHH(1,13)是 (d,k)=(1,13)RLL run-length-limited碼,功率消耗和頻帶利用率相對(duì)折中的碼 ,碼率為 2/3。 HHH(1,13) 編碼保證在傳輸 IR信號(hào)時(shí)至少一個(gè)符號(hào)位,最多 13個(gè)符號(hào)位,一個(gè)脈沖之間的概括在第 4.1 節(jié)的表 2 中支持?jǐn)?shù)據(jù)率出現(xiàn) .信號(hào) 2是信號(hào) 3的電信號(hào)表示,波特率在 115.2 kbit/s以下時(shí), ,除了編碼之外 ,信號(hào)2 被編入幀中,每個(gè)幀中包含一個(gè)起始位, 8個(gè)數(shù)據(jù)位,一個(gè)停止位,(達(dá)到 115.2 kbit/s) 在附錄 B中被描述,高于 115.2 kbit/s,數(shù)據(jù)以相同的格式組成許多數(shù)據(jù)符號(hào)位,具體格式如表 5所示。 3.2. 光學(xué)的角度定義 假定光軸對(duì)包含光學(xué)點(diǎn)的表面是正確的 (見圖 3). 簡單的說,光學(xué)的點(diǎn)中心作為叁考點(diǎn),參考點(diǎn)處,光學(xué)軸脫離了節(jié)點(diǎn)。如果有不均勻 ,只要分配的最大半角不超過允許的半 -角范圍最大值,而且分配的最小半角是不少于半角范圍最小量,一半 - 角度 的范圍規(guī)格被碰到。 1 紅外信號(hào)輸入 紅外信號(hào)輸出 紅外發(fā)送編碼電路 紅外接收解碼電路 編碼 /解碼 輸出 /LED 驅(qū)動(dòng) 探測(cè)與接收 紅外轉(zhuǎn)換電路 2 3 圖 2 紅外轉(zhuǎn)換模塊 15 圖 3參考點(diǎn)的幾何圖形 4. 媒體接口規(guī)格 4.1.全部的連接 有兩組不同規(guī)格的發(fā)射器 /接收器。第一個(gè),如標(biāo)準(zhǔn)中所言,是一個(gè)從 0到至少 1公尺的連接。第二個(gè)就是低能量的時(shí)候,有一個(gè)較短的距離。有三個(gè)可能 的連接:(見表 1),低能量對(duì)低能量的標(biāo)準(zhǔn),距離是光學(xué)參考面之間 表 1連接距離規(guī)格 誤差不能超過 10-8,連接 將實(shí)現(xiàn)且滿足 BER規(guī)格, 比特率和脈沖間隔:紅外通信 IrDA應(yīng)滿足 9.6kbit/s??梢詤⒖枷旅媪谐龅牟ㄌ芈屎兔}沖間隔的,見表 2。 波特率不高于 115.2kbit/s,最小的脈沖間隔是相同的 (允許 3/16的脈沖調(diào)制,對(duì)于 115.2kbit/s用最小的脈沖間隔(或使用 1.63個(gè)微秒減 0.22微秒寬度 ).最大的脈沖間隔是 3/16個(gè)比特位 ,脈沖的寬度為比特位的 2.5%,即 0.60微秒。 對(duì)于 0.576Mbit/s和 1.152Mbit/s,最大和最小脈沖之間是 25%的比特位,允許 5%到 8%的變動(dòng)。 對(duì)于 4.0Mbit/s,最大和最小脈沖之間的寬度是 25%加上或減去 2%。對(duì)于4.0Mbit/s,最大與最小的比特對(duì)相差 50%+/-2%的比特位,當(dāng)比特對(duì)需要脈沖時(shí), 低電量 低電量 標(biāo)準(zhǔn) 低電量 標(biāo)準(zhǔn) 標(biāo)準(zhǔn) 最低限度的連接長度 0 0 0 最大限度的連接長度 0.2 0.3 1.0 半角 參考軸 參考的接口點(diǎn) 參考面就是點(diǎn)的外表面,包括該點(diǎn) 參考點(diǎn)的中 心軸 16 可能產(chǎn)生兩倍的脈沖。 對(duì)于 16Mbit/s,最大,最小脈沖間相差 8%的比特位。連接應(yīng)滿足超過連接長度的 BER規(guī)則且滿足光學(xué)的脈沖限制。 波特率 編碼 誤差 最小脈沖寬度 正常的脈沖寬度 最大脈沖寬度 2.4Kbit/s RZI +/-0.87 1.41vs 78.13vs 88.55vs 9.6Kbit/s RZI +/-0.87 1.41vs 19.53vs 22.13vs 19.2Kbit/s RZI +/-0.87 1.41vs 9.77vs 11.07vs 38.4Kbit/s RZI +/-0.87 1.41vs 4.88vs 5.96vs 57.6Kbit/s RZI +/-0.87 1.41vs 3.26vs 4.34vs 115.2Kbit/s RZI +/-0.87 1.41vs 1.63vs 2.23vs 0.576Mbit/s RZI +/-0.1 295.2ns 434.0ns 520.8ns 115.2Mbit/s RZI +/-0.1 147.6ns 217.0ns 260.4ns 4.0Mbit/s 單脈沖 雙脈沖 4PPM 4PPM +/-0.01 +/-0.01 115.0ns 240.0ns 125.0ns 250.0ns 135.0ns 260.0ns 16.0Mbit/s HHH ( 1, 13) +/-0.01 38.3ns 41.7ns 45.0ns 表 2 波特率和脈沖寬度規(guī)格 為了保證用較慢的系統(tǒng)保持連續(xù),一旦高速的連接建立,它可能至少每 500 ms 發(fā)送一系列的紅外交互脈沖,只要連接依然與慢的系統(tǒng)連接著,因?yàn)樗赡苡兴蓴_。 SIP 被定義為 發(fā)射器的 1.6 ms 光學(xué)脈沖 ,它伴隨著一個(gè) 7.1 ms 的發(fā)射器。資訊科技模擬開始脈沖 , 引起干擾系統(tǒng)至少 500 ms 一次。見到第 5.2 節(jié)。 上升時(shí)間 Tr,下降時(shí)間 Tf 和跳動(dòng)的指定值在表 3 中列出 4.2. 活躍的輸出接口 在活躍的輸出接口,紅外信號(hào)被發(fā)出。在表 3 中出現(xiàn)的指定的活躍輸出接口叁數(shù)在第 1.4 節(jié)和聯(lián)合的測(cè)試方法中被定義并寫在附錄 A, .Std 提及標(biāo)準(zhǔn)的 0 到1 公尺連接 ;LP 提及低能量選項(xiàng) ;BOTH 兩者都 提到 17 規(guī)格 數(shù)據(jù)率 類型 最小值 最大值 峰峰波長 Up um 所有 都有 0.85 0.90 最大程度的角度 所有 Std - 500* “” “” LP - 72* 最小的角度 =115.2kbit/s Std 40 - “” “” =115.2kbit/s LP 3.6 - “” “” 115.2kbit/s Std 100 “” “” 115.2kbit/s LowPwr 9 半角,程度 所有 所有 15 30 時(shí)鐘準(zhǔn)確性 所有 所有 表 2 表 2 上升時(shí)間 Tr 10-90% ,下降時(shí)間 Tf 90-10%, ns =115.2kbit/s 所有 - 600 上升時(shí)間 Tr 10-90% ,下降時(shí)間 Tf 90-10%, ns 115.2kbit/s-4.0 Mbit/s Std - 40 上升時(shí)間 Tr 10-90% ,下降時(shí)間 Tf 90-10%, ns 16.0 Mbit/s 所有 - 19 脈沖間隔 所有 所有 表 2 表 2 跳動(dòng)銳利 ,% 所有 所有 - 25 =115.2kbit/s 所有 - +/-6.5 0.576&1.152 所有 - +/-2.9 18 Mbit/ s 4.0 Mbit/s 所有 - +/-4.0 16.0 Mbit/s Std - +/-4.0 *對(duì)于給定的發(fā)射器, IEC 60825-1 AEL 1級(jí)界限可能是比這更少。見 2.4節(jié)上方的 附錄一 4.3. 活躍的輸入接口 如果適當(dāng)?shù)募t外光學(xué)信號(hào)接觸到輸入接口 ,發(fā)現(xiàn)信號(hào)時(shí),以接收電路為條件,將結(jié)果輸出到 IR 譯碼器。表 4 中指定的輸入接口參數(shù)在第 1.4 節(jié)中被定義。決定紅外接口序列值的特別測(cè)試方法在附錄一。 規(guī)格 比特率 類型 最小值 最大值 角的范圍 最大的光發(fā)射 mW/cm2 所有 兩者都有 - 500 角的范圍最小的光發(fā)射 mW/cm2 小于等于115.2 kbit/ s 低電源 9.0 - “” “ ” 小于等于115.2 kbit/ s 標(biāo)準(zhǔn)電源 4.0 - “ ” “ ” 高于 115.2 kbit/ s 低電源 22.5 - “ ” “ ” 高于 115.2 kbit/ s 標(biāo)準(zhǔn)電源 10.0 - 半角 所有 兩者都有 15 - 接收器 小于等于 4.0 Mbit/ s 標(biāo)準(zhǔn)電源 - 10 接收器 小于等于 4.0 Mbit/ s 低電源 - 0.5 接收器 16.0 Mbit/ s 兩者都有 - 0.10 19 表 4 活躍的輸入規(guī)格 活躍的輸入接口沒有半角最大值。連接應(yīng)該從 0 度到至少 15 度。 沒有活躍的輸入接口跳動(dòng)規(guī)格 ,超過要求應(yīng)該滿足輸出的需要。對(duì)所有的協(xié)議和可允許的輸出接口規(guī)格除了非允許的密碼以外,連接應(yīng)該滿足 BER 規(guī)格。對(duì)于比特率小于等于 115.2kbit/s,被允許的密碼在紅外線連接允許協(xié)議和紅外線連接管理協(xié)議中被記錄,見第 1.2 節(jié), 0.576Mbit/s 和 1.152Mbit/s 和 4.0Mbit/s,見文件的第 5 節(jié)。 5. 0.576Mbit/s , 1.152Mbit/s , 4.0Mbit/ s 和 16.0Mbit/ s 調(diào)制和解調(diào) 5.1. 范圍 這一個(gè)區(qū)段包括數(shù)據(jù)調(diào)制和解調(diào),從 115.2kbit/ s 到 16.0Mbit/ s 。 0.576Mbit/ s 和 1.152Mbit/ s 與 115.2kbit/s使用相近的編碼規(guī)則 ;4.0Mbit/ s 率采用 PPM編碼 ,兩者采用小包的格式 ,數(shù)據(jù)的編碼 ,循環(huán)檢查 ,和對(duì)于以光學(xué)的接口為基礎(chǔ)的連接系統(tǒng)的結(jié)構(gòu)格式 .。 16.0Mbit/ s 率使用 HHH(1,13)編碼 ,CRC 檢查和適用于 4.0Mbit/s的結(jié)構(gòu)格式和必須的新的編碼的規(guī)格。 當(dāng)它被定義為低比特率的時(shí)候,以這些較高的比率操作的系統(tǒng)對(duì) IrLAP 和 IrLMP 是透明的 ,同樣地 ,它被用來做 IrLAP 的 IR介質(zhì)的調(diào)制 /解調(diào)路徑 . 這些較高的比率在正常的 IrLAP 協(xié)議中被協(xié)商 ,對(duì)于這些和高比特率的特別的比特領(lǐng)域 ,見1.2 節(jié) 5.2. 連續(xù)的紅外線的交互作用脈沖 為了要用比較慢的 (達(dá)到 115.2kbit/s)系統(tǒng)保證非迅裂共存 , 已經(jīng)建立一次較高的連接 (高于 115.2Kbit/s),高速率的系統(tǒng)應(yīng)該發(fā)出序列 的紅外線的交互作用脈(SIP),至少 500 次 /ms 只要始終與系統(tǒng)連接 ,它影響這個(gè)連接 (見 4.1 節(jié) ).一個(gè)小包傳輸后 ,脈沖就可立即傳送 ,脈沖在下邊被顯示 : 20 5.3. 0.576Mbit/ s 和 1.152Mbit/s 5.3.1. 編碼 0.576Mbit/ s 和 1.15
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江西省上饒市2024-2025學(xué)年度第一學(xué)期八年級(jí)上冊(cè)生物期末綠色評(píng)價(jià)試卷(含答案)
- 安徽省蕪湖市2024-2025學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)控歷史試卷(含答案)
- 11年1月貨幣銀行學(xué)試卷與答案
- 棉紗原料倉庫項(xiàng)目可行性研究報(bào)告寫作模板-申批備案
- 數(shù)學(xué)-遼寧省大連市2024-2025學(xué)年高三上學(xué)期期末雙基測(cè)試卷及答案
- 2024青苔離婚經(jīng)濟(jì)補(bǔ)償協(xié)議書2篇
- 2024版服務(wù)協(xié)議續(xù)簽格式樣本版
- 福建省南平市金橋?qū)W校2021-2022學(xué)年高一語文聯(lián)考試卷含解析
- 2024鋁扣板吊頂工程節(jié)能評(píng)估與驗(yàn)收合同協(xié)議3篇
- 2025廠房租賃居間服務(wù)及市場(chǎng)調(diào)研協(xié)議3篇
- 中試部培訓(xùn)資料
- 【可行性報(bào)告】2024年第三方檢測(cè)相關(guān)項(xiàng)目可行性研究報(bào)告
- 藏醫(yī)學(xué)專業(yè)生涯發(fā)展展示
- 信息安全保密三員培訓(xùn)
- 2024新版《藥品管理法》培訓(xùn)課件
- 2024政務(wù)服務(wù)綜合窗口人員能力與服務(wù)規(guī)范考試試題
- JT∕T 1477-2023 系列2集裝箱 角件
- 《陸上風(fēng)電場(chǎng)工程設(shè)計(jì)概算編制規(guī)定及費(fèi)用標(biāo)準(zhǔn)》(NB-T 31011-2019)
- 承兌匯票臺(tái)帳模版
- 地下管道頂管施工方案(非常全)
- 有色金屬工業(yè)安裝工程質(zhì)量檢驗(yàn)評(píng)定標(biāo)準(zhǔn)(共1004頁)
評(píng)論
0/150
提交評(píng)論