模具型腔數(shù)控加工計(jì)算機(jī)輔助刀具選擇和研究外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第1頁(yè)
模具型腔數(shù)控加工計(jì)算機(jī)輔助刀具選擇和研究外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第2頁(yè)
模具型腔數(shù)控加工計(jì)算機(jī)輔助刀具選擇和研究外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第3頁(yè)
模具型腔數(shù)控加工計(jì)算機(jī)輔助刀具選擇和研究外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第4頁(yè)
模具型腔數(shù)控加工計(jì)算機(jī)輔助刀具選擇和研究外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Mould type of numerical control process computer assist the cutter choose and study Foreword Numerical control include cutter production and cutter of orbit choose two key problems process ,. The first problem has been got and studied extensivly and deeply over the past 20 years, a lot of algorithms developed have already got application in commercial CAD/ CAM system. Most CAM systems can produce the cutter orbit automatically after users input relevant parameters at present. Comparatively speaking , it is still not ripe to regard quality , efficiency as the research of choosing the problem of cutter of optimizing the goal correctly, do not have commercial CAM system that can offer the preferred decision support tool of cutter at present, therefore it is difficult to realize the integrating automatically and organically of CAD/ CAM. The cutter is chosen to usually include cutter type and cutter size. Generally speaking , suitable for one processing cutter of target for much kind , one cutter can finish different processing tasks, so it is easier to only consider meeting the cutter that basically processes the requirement and choose, especially to geometirc characteristics of model such as the hole , trough ,etc. But in fact, it is common for cutter to choose and sure optimization goal interrelate, for instance most heavy to cut efficiency , process time , minimum process cost , longest service life ,etc. at least, so the cutter is chosen it is a complicated optimization question. Such as mould type one of parts, because the geometirc form is complicated (usually include curved surface of freedom and island), influence geometry that cutter choose it restrains from to be can explicit to say among CAD model, need to design the corresponding algorithm to draw, therefore choose the cutter specification suitable and cutter association , it is not easy things by improving efficiency and quality processed in numerical control. Mould type generally with preparation method that numerical control mill, usually including rough machining, half finish machining , precise process of processing etc. The principle of rough machining is to spare no effort to remove the surplus metal with high efficiency, therefore hope to choose the larger cutter, but the cutter is oversized, ma y cause the increase of the crude volume ; Half finish machining of tasks to remove rough machining leave over step that get off mainly; Finish machining mainly guarantees size of the part and surface quality. Consider , go on , select exist , sure by comp uter difficult automatically totally up till now, therefore assist the cutter to choose in the computer that we developed (Computer Aided Tool Selection , CATS) among the system, base on , provide one aid decision tool for user, rough machining , half finish machining , precise to process etc., the real policy-making power is still left to users, in order to give full play to the advantages of computer and people. 1 Basic structure of the system CATS system is CAD model, output for cutter type , cutter specification , mill depth of sharpening , enter the giving amount , rotational speed of main shaft (cut the pace ) and process six parameters such as time (such as Fig. 1), including choosing the aid decision tool in cutter type, rough machining cutter choose aid decision tool, half finish machining cutter choose aid decision tool and finish machining cutter choose aid decision tool ,etc. Given the rough machining in Xingqiang processing of the important position (usually rely time 510 times), rough machining, the system automatically optimize portfolio with cutlery functions to enhance overall processing efficiency. In addition to the decision-making tools, the system also has a detailed look cutlery norms, based on the type and size cutlery recommended processing parameters and assess the function of processing time, the last generation of the overall results of choice cutlery statements (figure 2). All the data and knowledge systems cutlery done by the background database support. 2 Key technologies and algorithms 2.1 Cutlery type choice According to Assistant Xingqiang digital processing practice, Xingqiang Xi state general processing cutlery into milling cutter, milling cutter radius milling cutter and the first three balls. D based cutlery diameter, radius radius r when r=0 for milling cutter, 0R Cutlery can be divided into the overall style and embed films ceremony. For inlay film style, the key is to select the materials razor blades, razor blades materials choice depends on three elements : the processing of working materials, machine tools and cutlery jig stability of the state structures. Processing system will be translated into material steel, stainless steel, cast iron, nonferrous metals, materials and hard to cut materials six groups. Machine tool jig stability into good, better and less than three levels. Cutlery investigation into the short and long cantilever structures two, the system automatically reasoning on the basis of the specific circumstances of razor blades materials, decision-making knowledge from Walter cutlery manual system by the users first choice cutlery type in the world. To embed film style cutlery, a rules-based automated reasoning suitable razor blades materials. For example, if the final processing of materials for the steel, machine tool jig for good stability, cutlery cantilever structures for short, razor blades materials for WAP25. Rough machining cutlery portfolio optimization Xingqiang rough machining the aim is to maximize the removal of excess metal normally used milling cutter, take-cutting approach. Thus, 3D mould Xingqiang the rough machining process, is actually a series of 2.5D components Xingqiang processing. Cutlery optimization is to find a group of cutlery portfolio, allowing for maximum efficiency removal of most metals. Cutlery portfolio optimized basic methods as follows : A. To do some long step into knife in the direction of a group of vertical and horizontal search Xingqiang another entity to form a search layer. B. Derive closed to the contours. C. Calculated between Central and outside the island or islands and the distance between the key that affect cutlery choice geometric constraints algorithm flow As shown in figure 3 D. According to the principle of the merger (adjacent to the critical distance will be smaller than the difference between the threshold) to search layer merger, graphic processing and identifying viable cutlery sets, a processing layer. E. Determine the use of each processing layer cutlery, cutlery Xingqiang processing portfolio. F. According cutlery recommended processing parameters (cutting speed, depth and into Xianxiao to speed), the calculation of material removal. G. According to the actual removal of the volume processing layer, the processing time for each processing layer. H. Xingqiang calculating the total processing time and residual volume. I. The overall portfolio of the Group cutlery processing efficiency assessment. J . Repeat ai until derive optimal mix of cutlery. If time is the goal, called for the entire processing time t Xingqiang shortest portfolio to optimize cutlery. 2.2 Semi-finished cutlery choice The main purpose is to remove semi-finished rough machining residual contours of the new warrants. To completely remove height, depth must be greater than Xianxiao parts of each level to the surface distance x. Its algorithm steps are as follows : Step 1:entity models from parts of two adjacent to the cross section of the surface contours and the corresponding length; Step 2: The average length of contours; Step 3:calculate its width; Step 4 : calculating height floor to the surface of parts to the law distance x; Step 5 : steps 1 repeat steps 4, each level of decision Xianxiao depth; Step 6 : calculate cutlery diameter D, by or under cutlery experience D=x/0.6 manual recommended; steps7 : choose Xianxiao x depth than the smallest cutlery. 2.3 fine cutlery choice Fine cutlery choice is the basic principle : cutlery parts surface radius smaller than the smallest size R curve radius r, the general admission R= (0.80.9) r. Its algorithm steps are as follows : Step 1 : from the smallest curve radius calculation model parts entities; Step 2 : From cutlery database search radius of less than a cutlery calculated radius of the curve all cutlery; Step 3 : select the best cutlery meet the above requirements; Step 4 : If all cutlery than the smallest curve radius, the smallest chosen as a recommended cutlery. 3 summary and discussion Mould type of craft of processing plan , need high technology and experience very usually, prepare NC time of data nearly and process time to be large. So person who produce of craft of processing plan and NC process demand of the order right away seem further more urgent automatically. This text system research mould type of craft cutter plan , choose problem, put forward mould of rough machining , half finish machining , finish machining principle and method that cutter chooses, the realization algorithm with corresponding structure , and has carried on the realization of preliminary programming under the environment of UG/OPEN API, have developed CATS prototype system. In cutter type and on the foundation that the specification is fixed, system also can recommend parameter of processing according to cutter manual (cut pace , mill , sharpen depth , enter person who give ,etc.), evaluate corresponding processing time. Final purpose its to realize integration of CAD/CAM really , produce through aftertreatment numerical control process the order. Need to point out , should improve the mould type totality of and process efficiency, need it from the rough machining , half finish machining , consideration on the whole of finish machining , make up and optimize many targets, this will be work that we want to carry on next . 模具型腔數(shù)控加工計(jì)算機(jī)輔助刀具選擇和研究 引言 數(shù)控加工中包括刀具軌跡的產(chǎn)生和刀具選擇兩個(gè)關(guān)鍵問(wèn)題。前一問(wèn)題在過(guò)去的20 年里得到了廣泛而深入地研究, 發(fā)展的許多算法已在商用 CAD/ CAM 系統(tǒng)中得到應(yīng)用。目前大多數(shù) CAM 系統(tǒng)能夠在用戶輸入相關(guān)參數(shù)后自動(dòng)產(chǎn)生刀具軌跡。比較而言,對(duì)以質(zhì)量、效率為優(yōu)化目標(biāo)的刀具選擇問(wèn)題的研究還遠(yuǎn)未成熟,當(dāng)前還沒(méi)有商用CAM 系統(tǒng)能夠提供刀具優(yōu)選的決策支持工具,因而難以實(shí)現(xiàn) CAD/ CAM 的自動(dòng)有機(jī)集成。刀具選擇通常包括刀具類型和刀具尺寸。一般來(lái)說(shuō),適合一個(gè)加工對(duì)象的刀具通常有多種,一種刀具又可完成不同的加工任務(wù),所以僅 考慮滿足基本加工要求的刀具選擇是較容易的,尤其對(duì)孔、槽等典型幾何特征。但實(shí)際上,刀具選擇通常和一定的優(yōu)化目標(biāo)相聯(lián)系,如最大切削效率、最少加工時(shí)間、最低加工成本、最長(zhǎng)使用壽命等,因此刀具選擇又是一個(gè)復(fù)雜的優(yōu)化問(wèn)題。比如模具型腔類零件,由于幾何形狀復(fù)雜 (通常包含自由曲面及島 ) ,影響刀具選擇的幾何約束在 CAD 模型中不能顯式表示,需要設(shè)計(jì)相應(yīng)的算法進(jìn)行提取,因而選擇合適的刀具規(guī)格及其刀具組合,以提高數(shù)控加工的效率與質(zhì)量并非易事。 模具型腔一般用數(shù)控銑的加工方法,通常包括粗加工、半精加工、精加工等工序。粗加工的原則就是盡最大可能高效率地去除多余的金屬,因而希望選擇大尺寸的刀具,但刀具尺寸過(guò)大,可能導(dǎo)致未加工體積的增多 ;半精加工的任務(wù)主要是去除粗加工遺留下來(lái)的臺(tái)階 ;精加工則主要保證零件的尺寸及表面質(zhì)量??紤]到目前完全由計(jì)算機(jī)進(jìn)行自動(dòng)選刀還存在一定困難,因而在我們開(kāi)發(fā)的計(jì)算機(jī)輔助刀具選擇(Computer Aided Tool Selection , CATS)系統(tǒng)中,立足于給用戶提供一個(gè)輔助決策工具,即粗加工、半精加工、精加工等,真正的決策權(quán)仍留給用戶,以充分發(fā)揮計(jì)算機(jī)和人的優(yōu)勢(shì)。 1 系統(tǒng)基本結(jié)構(gòu) CATS 系統(tǒng)的輸入為 CAD 模型,輸出為刀具類型、刀具規(guī)格、銑削深度、進(jìn)給量、主軸轉(zhuǎn)速 (切削速度 ) 和加工時(shí)間等六個(gè)參數(shù) (如圖 1) ,包括刀具類型選擇輔助決策工具、粗加工刀具選擇輔助決策工具、半精加工刀具選擇輔助決策工具及精加工刀具選擇輔助決策工具等 鑒于粗加工在型腔加工中的重要地位 (通常為精加工時(shí)間的 5 10 倍 ) ,粗加工時(shí)系統(tǒng)具有刀具自動(dòng)優(yōu)化組合的功能,以提高整體加工的效率。除了上述決策工具外, 系統(tǒng)還具有查看刀具詳細(xì)規(guī)范、根據(jù)刀具類型和尺寸推薦加工參數(shù)及評(píng)估加工時(shí)間等功能,最后生成總的刀具選擇結(jié)果報(bào)表 。系統(tǒng)所有的刀具數(shù)據(jù)及知識(shí)均由后臺(tái)數(shù)據(jù)庫(kù)做支持。 2 關(guān)鍵技術(shù)及算法 2.1 刀具類型選擇 根據(jù)模具型腔數(shù)控加工實(shí)踐,型腔銑加工的刀具一般分為平頭銑刀、圓角銑刀及球頭銑刀三種。設(shè)刀具直徑為 D,圓角半徑為 r ,當(dāng) r=0 時(shí)為平頭銑刀, 0R 刀具又可分為整體式和鑲片式。對(duì)于鑲片式,關(guān)鍵是選取刀片的材質(zhì),刀片材質(zhì)的選擇取決于三個(gè)要素:被加工工件的材料、機(jī)床夾具的穩(wěn)定性以及刀具的懸臂狀態(tài)。系統(tǒng)將被加工工件的材料分為鋼、不銹鋼、鑄鐵、有色金屬、難切削材料和硬材料等六組。機(jī)床夾具的穩(wěn)定性分為很好 、好、不足三個(gè)等級(jí)。刀具懸臂分為短懸臂和長(zhǎng)懸臂兩種,系統(tǒng)根據(jù)具體情況自動(dòng)推理出刀片材質(zhì),決策知識(shí)來(lái)源于 WALTER 刀具手冊(cè),系統(tǒng)由用戶首先交互選擇刀具類型。對(duì)鑲片式刀具,基于規(guī)則自動(dòng)推理出合適的刀片材質(zhì)。例如,如果被加工工件的材料為“鋼”,機(jī)床夾具的穩(wěn)定性為很好,刀具懸臂為短懸臂,則刀片材質(zhì)應(yīng)為 WAP25 。 粗加工刀具組合優(yōu)化 型腔粗加工的目的就是最大化地去除多余的金屬,通常使用平頭銑刀,采取層切的方法。因此, 3D模具型腔的粗加工過(guò)程,實(shí)際上就是對(duì)一系列 2.5D 模具型腔的加工。刀具優(yōu)化的目 的就是要

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論