全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
二 直線中的幾類對稱問題預(yù)習(xí):點關(guān)于軸的對稱點的坐標(biāo)為 ;關(guān)于軸的對稱點的坐標(biāo)為 ;關(guān)于(0,0)的對稱點的坐標(biāo)為 ;關(guān)于的對稱點的坐標(biāo)為 ;關(guān)于的對稱點的坐標(biāo)為 .直線關(guān)于軸的對稱的直線方程為 ;關(guān)于軸的對稱的直線方程為 ;關(guān)于(0,0)的對稱的直線方程為 ;關(guān)于的對稱的直線方程為 ;關(guān)于的對稱的直線方程為 .新課對稱問題,是解析幾何中比較典型,高考中常考的熱點問題. 對于直線中的對稱問題,我們可以分為:點關(guān)于點的對稱;點關(guān)于直線的對稱;直線關(guān)于點的對稱,直線關(guān)于直線的對稱. 本文通過幾道典型例題,來介紹這幾類對稱問題的求解策略.一、點關(guān)于點的對稱問題點關(guān)于點的對稱問題,是對稱問題中最基礎(chǔ)最重要的一類,其余幾類對稱問題均可以化歸為點關(guān)于點的對稱進行求解. 熟練掌握和靈活運用中點坐標(biāo)公式是處理這類問題的關(guān)鍵.例1 求點A(2,4)關(guān)于點B(3,5)對稱的點C的坐標(biāo).分析 易知B是線段AC的中點,由此我們可以由中點坐標(biāo)公式,構(gòu)造方程求解.總結(jié):(1)關(guān)于點(a,b)對稱的問題點關(guān)于點的對稱點是二、點關(guān)于直線的對稱問題點關(guān)于直線的對稱問題是點關(guān)于點的對稱問題的延伸,處理這類問題主要抓住兩個方面:兩點連線與已知直線斜率乘積等于-1,兩點的中點在已知直線上.例2 求點A(1,3)關(guān)于直線l:x+2y-3=0的對稱點A的坐標(biāo).分析 因為A,A關(guān)于直線對稱,所以直線l是線段AA的垂直平分線. 這就找到了解題的突破口.總結(jié):點關(guān)于的對稱點是點關(guān)于的對稱點是點關(guān)于對稱的點為點三、直線關(guān)于某點對稱的問題直線關(guān)于點的對稱問題,可轉(zhuǎn)化為直線上的點關(guān)于某點對稱的問題,這里需要注意到的是兩對稱直線是平行的. 我們往往利用平行直線系去求解.例3 求直線2x+11y+16=0關(guān)于點P(0,1)對稱的直線方程.分析 本題可以利用兩直線平行,以及點P到兩直線的距離相等求解,也可以先在已知直線上取一點,再求該點關(guān)于點P的對稱點,代入對稱直線方程待定相關(guān)常數(shù).總結(jié):曲線關(guān)于點的對稱曲線是特別的,曲線關(guān)于原點的對稱直線是四、直線關(guān)于直線的對稱問題直線關(guān)于直線對稱問題,包含有兩種情形:兩直線平行,兩直線相交. 對于,我們可轉(zhuǎn)化為點關(guān)于直線的對稱問題去求解;對于,其一般解法為先求交點,再用“到角”(未學(xué)),或是轉(zhuǎn)化為點關(guān)于直線對稱問題.例4 求直線l1:x-y-1=0關(guān)于直線l2:x-y+1=0對稱的直線l的方程.分析 由題意,所給的兩直線l1,l2為平行直線,求解這類對稱總是,我們可以轉(zhuǎn)化為點關(guān)于直線的對稱問題,再利用平行直線系去求解,或者利用距離相等尋求解答.例5 試求直線l1:x-y-2=0關(guān)于直線l2:3x-y+3=0對稱的直線l的方程.分析 兩直線相交,可先求其交點,再利用到角公式求直線斜率.總結(jié):曲線關(guān)于的對稱的對稱曲線是曲線關(guān)于對稱曲線是曲線關(guān)于對稱曲線為特別的,曲線關(guān)于的對稱曲線為曲線關(guān)于的對稱曲線為曲線關(guān)于直線的對稱曲線為課后訓(xùn)練1、直線關(guān)于點對稱的直線方程是2、(北京)若直線:與直線的交點位于第一象限,則直線的傾斜角的取值范圍是 3、(全國文)直線關(guān)于軸對稱的直線方程為 4、 (安徽春)已知直線:,:.若直線與關(guān)于對稱,則的方程為 5、求點關(guān)于直線:的對稱點的坐標(biāo)6、已知:與,是對稱的兩點,求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度園林綠化工程承包合同模板
- 二零二五年度電子商務(wù)平臺用戶協(xié)議修訂與審查合同3篇
- 2025年度智慧城市解決方案提供商吸收合并合同范本3篇
- 2024美食節(jié)知識產(chǎn)權(quán)保護與侵權(quán)糾紛處理協(xié)議3篇
- 2025年度廚房設(shè)備故障預(yù)防與維修服務(wù)合同2篇
- 小學(xué)教師團隊的決策能力提升途徑
- 2024質(zhì)保金條款詳細協(xié)議版B版
- 小學(xué)數(shù)學(xué)教育與未來職業(yè)發(fā)展的聯(lián)系
- 二零二五年度寵物領(lǐng)養(yǎng)協(xié)議中的責(zé)任分配與權(quán)益保障3篇
- 宏觀經(jīng)濟視角下的全球教育市場預(yù)測報告
- 安徽省合肥市包河區(qū)2023-2024學(xué)年三年級上學(xué)期語文期末試卷
- 2024版食源性疾病培訓(xùn)完整課件
- 兒童傳染病預(yù)防課件
- 2025年中國蛋糕行業(yè)市場規(guī)模及發(fā)展前景研究報告(智研咨詢發(fā)布)
- 護理組長年底述職報告
- 集裝箱活動房供需合同
- 巨量引擎合同范本
- 初中語文:非連續(xù)性文本閱讀練習(xí)(含答案)
- 中考英語過去將來時趣味講解動態(tài)課件(43張課件)
- 教育家精神引領(lǐng)師范生高質(zhì)量培養(yǎng)的路徑探析
- 中國抗腫瘤治療相關(guān)惡心嘔吐預(yù)防和治療指南(2023版)解讀
評論
0/150
提交評論