2013屆高考數(shù)學(xué)一輪復(fù)習(xí)精品學(xué)案:第33講圓錐曲線方程及性質(zhì).doc_第1頁
2013屆高考數(shù)學(xué)一輪復(fù)習(xí)精品學(xué)案:第33講圓錐曲線方程及性質(zhì).doc_第2頁
2013屆高考數(shù)學(xué)一輪復(fù)習(xí)精品學(xué)案:第33講圓錐曲線方程及性質(zhì).doc_第3頁
2013屆高考數(shù)學(xué)一輪復(fù)習(xí)精品學(xué)案:第33講圓錐曲線方程及性質(zhì).doc_第4頁
2013屆高考數(shù)學(xué)一輪復(fù)習(xí)精品學(xué)案:第33講圓錐曲線方程及性質(zhì).doc_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2013年普通高考數(shù)學(xué)科一輪復(fù)習(xí)精品學(xué)案第33講 圓錐曲線方程及性質(zhì)一課標(biāo)要求:1了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用;2經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義、標(biāo)準(zhǔn)方程、幾何圖形及簡單性質(zhì);3了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道雙曲線的有關(guān)性質(zhì)。二命題走向本講內(nèi)容是圓錐曲線的基礎(chǔ)內(nèi)容,也是高考重點考查的內(nèi)容,在每年的高考試卷中一般有23道客觀題,難度上易、中、難三檔題都有,主要考查的內(nèi)容是圓錐曲線的概念和性質(zhì),從近十年高考試題看主要考察圓錐曲線的概念和性質(zhì)。圓錐曲線在高考試題中占有穩(wěn)定的較大的比例,且選擇題、填空題和解答題都涉及到,客觀題主要考察圓錐曲線的基本概念、標(biāo)準(zhǔn)方程及幾何性質(zhì)等基礎(chǔ)知識和處理有關(guān)問題的基本技能、基本方法。對于本講內(nèi)容來講,預(yù)測2013年:(1)1至2道考察圓錐曲線概念和性質(zhì)客觀題,主要是求值問題;(2)可能會考察圓錐曲線在實際問題里面的應(yīng)用,結(jié)合三種形式的圓錐曲線的定義。三要點精講1橢圓(1)橢圓概念平面內(nèi)與兩個定點、的距離的和等于常數(shù)(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫橢圓的焦距。若為橢圓上任意一點,則有。橢圓的標(biāo)準(zhǔn)方程為:()(焦點在x軸上)或()(焦點在y軸上)。注:以上方程中的大小,其中;在和兩個方程中都有的條件,要分清焦點的位置,只要看和的分母的大小。例如橢圓(,)當(dāng)時表示焦點在軸上的橢圓;當(dāng)時表示焦點在軸上的橢圓。(2)橢圓的性質(zhì)范圍:由標(biāo)準(zhǔn)方程知,說明橢圓位于直線,所圍成的矩形里;對稱性:在曲線方程里,若以代替方程不變,所以若點在曲線上時,點也在曲線上,所以曲線關(guān)于軸對稱,同理,以代替方程不變,則曲線關(guān)于軸對稱。若同時以代替,代替方程也不變,則曲線關(guān)于原點對稱。所以,橢圓關(guān)于軸、軸和原點對稱。這時,坐標(biāo)軸是橢圓的對稱軸,原點是對稱中心,橢圓的對稱中心叫橢圓的中心;頂點:確定曲線在坐標(biāo)系中的位置,常需要求出曲線與軸、軸的交點坐標(biāo)。在橢圓的標(biāo)準(zhǔn)方程中,令,得,則,是橢圓與軸的兩個交點。同理令得,即,是橢圓與軸的兩個交點。所以,橢圓與坐標(biāo)軸的交點有四個,這四個交點叫做橢圓的頂點。同時,線段、分別叫做橢圓的長軸和短軸,它們的長分別為和,和分別叫做橢圓的長半軸長和短半軸長。由橢圓的對稱性知:橢圓的短軸端點到焦點的距離為;在中,且,即;離心率:橢圓的焦距與長軸的比叫橢圓的離心率。,且越接近,就越接近,從而就越小,對應(yīng)的橢圓越扁;反之,越接近于,就越接近于,從而越接近于,這時橢圓越接近于圓。當(dāng)且僅當(dāng)時,兩焦點重合,圖形變?yōu)閳A,方程為。2雙曲線(1)雙曲線的概念平面上與兩點距離的差的絕對值為非零常數(shù)的動點軌跡是雙曲線()。注意:(*)式中是差的絕對值,在條件下;時為雙曲線的一支(含的一支);時為雙曲線的另一支(含的一支);當(dāng)時,表示兩條射線;當(dāng)時,不表示任何圖形;兩定點叫做雙曲線的焦點,叫做焦距。橢圓和雙曲線比較:橢 圓雙 曲 線定義方程焦點注意:如何有方程確定焦點的位置!(2)雙曲線的性質(zhì)范圍:從標(biāo)準(zhǔn)方程,看出曲線在坐標(biāo)系中的范圍:雙曲線在兩條直線的外側(cè)。即,即雙曲線在兩條直線的外側(cè)。對稱性:雙曲線關(guān)于每個坐標(biāo)軸和原點都是對稱的,這時,坐標(biāo)軸是雙曲線的對稱軸,原點是雙曲線的對稱中心,雙曲線的對稱中心叫做雙曲線的中心。頂點:雙曲線和對稱軸的交點叫做雙曲線的頂點。在雙曲線的方程里,對稱軸是軸,所以令得,因此雙曲線和軸有兩個交點,他們是雙曲線的頂點。令,沒有實根,因此雙曲線和y軸沒有交點。1)注意:雙曲線的頂點只有兩個,這是與橢圓不同的(橢圓有四個頂點),雙曲線的頂點分別是實軸的兩個端點。2)實軸:線段叫做雙曲線的實軸,它的長等于叫做雙曲線的實半軸長。虛軸:線段叫做雙曲線的虛軸,它的長等于叫做雙曲線的虛半軸長。漸近線:注意到開課之初所畫的矩形,矩形確定了兩條對角線,這兩條直線即稱為雙曲線的漸近線。從圖上看,雙曲線的各支向外延伸時,與這兩條直線逐漸接近。等軸雙曲線:1)定義:實軸和虛軸等長的雙曲線叫做等軸雙曲線。定義式:;2)等軸雙曲線的性質(zhì):(1)漸近線方程為: ;(2)漸近線互相垂直。注意以上幾個性質(zhì)與定義式彼此等價。亦即若題目中出現(xiàn)上述其一,即可推知雙曲線為等軸雙曲線,同時其他幾個亦成立。3)注意到等軸雙曲線的特征,則等軸雙曲線可以設(shè)為: ,當(dāng)時交點在軸,當(dāng)時焦點在軸上。注意與的區(qū)別:三個量中不同(互換)相同,還有焦點所在的坐標(biāo)軸也變了。3拋物線(1)拋物線的概念平面內(nèi)與一定點F和一條定直線l的距離相等的點的軌跡叫做拋物線(定點F不在定直線l上)。定點F叫做拋物線的焦點,定直線l叫做拋物線的準(zhǔn)線。方程叫做拋物線的標(biāo)準(zhǔn)方程。注意:它表示的拋物線的焦點在x軸的正半軸上,焦點坐標(biāo)是F(,0),它的準(zhǔn)線方程是 ;(2)拋物線的性質(zhì)一條拋物線,由于它在坐標(biāo)系的位置不同,方程也不同,有四種不同的情況,所以拋物線的標(biāo)準(zhǔn)方程還有其他幾種形式:,.這四種拋物線的圖形、標(biāo)準(zhǔn)方程、焦點坐標(biāo)以及準(zhǔn)線方程如下表:標(biāo)準(zhǔn)方程圖形焦點坐標(biāo)準(zhǔn)線方程范圍對稱性軸軸軸軸頂點離心率說明:(1)通徑:過拋物線的焦點且垂直于對稱軸的弦稱為通徑;(2)拋物線的幾何性質(zhì)的特點:有一個頂點,一個焦點,一條準(zhǔn)線,一條對稱軸,無對稱中心,沒有漸近線;(3)注意強調(diào)的幾何意義:是焦點到準(zhǔn)線的距離。四典例解析題型1:橢圓的概念及標(biāo)準(zhǔn)方程例1求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)兩個焦點的坐標(biāo)分別是、,橢圓上一點到兩焦點距離的和等于;(2)兩個焦點的坐標(biāo)分別是、,并且橢圓經(jīng)過點;(3)焦點在軸上,;(4)焦點在軸上,且過點;(5)焦距為,;(6)橢圓經(jīng)過兩點,。解析:(1)橢圓的焦點在軸上,故設(shè)橢圓的標(biāo)準(zhǔn)方程為(),所以,橢圓的標(biāo)準(zhǔn)方程為。(2)橢圓焦點在軸上,故設(shè)橢圓的標(biāo)準(zhǔn)方程為(),由橢圓的定義知,又,所以,橢圓的標(biāo)準(zhǔn)方程為。(3),又由代入得,又焦點在軸上,所以,橢圓的標(biāo)準(zhǔn)方程為。(4)設(shè)橢圓方程為, , 又,所以,橢圓的標(biāo)準(zhǔn)方程為(5)焦距為, ,又,所以,橢圓的標(biāo)準(zhǔn)方程為或(6)設(shè)橢圓方程為(), 由得,所以,橢圓方程為點評:求橢圓的方程首先清楚橢圓的定義,還要知道橢圓中一些幾何要素與橢圓方程間的關(guān)系。例2(1)已知橢圓中心在原點,一個焦點為F(2,0),且長軸長是短軸長的2倍,則該橢圓的標(biāo)準(zhǔn)方程是 。(2)橢圓的中心為點,它的一個焦點為,相應(yīng)于焦點的準(zhǔn)線方程為,則這個橢圓的方程是() 解析:(1)已知為所求;(2)橢圓的中心為點它的一個焦點為 半焦距,相應(yīng)于焦點F的準(zhǔn)線方程為 ,則這個橢圓的方程是,選D。點評:求橢圓方程的題目屬于中低檔題目,掌握好基礎(chǔ)知識就可以。題型2:橢圓的性質(zhì)例3(1)在給定橢圓中,過焦點且垂直于長軸的弦長為,焦點到相應(yīng)準(zhǔn)線的距離為1,則該橢圓的離心率為( )(A) (B) (C) (D)(2)設(shè)橢圓=1(ab0)的右焦點為F1,右準(zhǔn)線為l1,若過F1且垂直于x軸的弦的長等于點F1到l1的距離,則橢圓的離心率是 。解析:(1)不妨設(shè)橢圓方程為(ab0),則有,據(jù)此求出e,選B。(2);解析:由題意知過F1且垂直于x軸的弦長為,即e=。點評:本題重點考查了橢圓的基本性質(zhì)。例4(1)橢圓短軸長是2,長軸是短軸的2倍,則橢圓中心到其準(zhǔn)線距離是( )A. B. C. D.(2)橢圓=1的焦點為F1和F2,點P在橢圓上.如果線段PF1的中點在y軸上,那么|PF1|是|PF2|的( )A.7倍 B.5倍 C.4倍 D.3倍解析:(1)D;由題意知a=2,b=1,c=,準(zhǔn)線方程為x=,橢圓中心到準(zhǔn)線距離為(2)A;不妨設(shè)F1(3,0),F(xiàn)2(3,0)由條件得P(3,),即|PF2|=,|PF1|=,因此|PF1|=7|PF2|,故選A。點評:本題主要考查橢圓的定義及數(shù)形結(jié)合思想,具有較強的思辨性,是高考命題的方向。題型3:雙曲線的方程例5(1)已知焦點,雙曲線上的一點到的距離差的絕對值等于,求雙曲線的標(biāo)準(zhǔn)方程;(2)求與橢圓共焦點且過點的雙曲線的方程;(3)已知雙曲線的焦點在軸上,并且雙曲線上兩點坐標(biāo)分別為,求雙曲線的標(biāo)準(zhǔn)方程。解析:(1)因為雙曲線的焦點在軸上,所以設(shè)它的標(biāo)準(zhǔn)方程為,。所以所求雙曲線的方程為;(2)橢圓的焦點為,可以設(shè)雙曲線的方程為,則。又過點,。綜上得,所以。點評:雙曲線的定義;方程確定焦點的方法;基本量之間的關(guān)系。(3)因為雙曲線的焦點在軸上,所以設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為;點在雙曲線上,點的坐標(biāo)適合方程。將分別代入方程中,得方程組:將和看著整體,解得,即雙曲線的標(biāo)準(zhǔn)方程為。點評:本題只要解得即可得到雙曲線的方程,沒有必要求出的值;在求解的過程中也可以用換元思想,可能會看的更清楚。例6. 已知雙曲線中心在原點,一個頂點的坐標(biāo)為,且焦距與虛軸長之比為,則雙曲線的標(biāo)準(zhǔn)方程是_.解析:雙曲線中心在原點,一個頂點的坐標(biāo)為,則焦點在x軸上,且a=3,焦距與虛軸長之比為,即,解得,則雙曲線的標(biāo)準(zhǔn)方程是;點評:本題主要考查雙曲線的基礎(chǔ)知識以及綜合運用知識解決問題的能力。充分挖掘雙曲線幾何性質(zhì),數(shù)形結(jié)合,更為直觀簡捷。題型4:雙曲線的性質(zhì)例7(1)已知雙曲線(a0,b)的兩條漸近線的夾角為,則雙曲線的離心率為( )A.2 B. C. D.解析:(1)雙曲線的右焦點為F,若過點F且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率, ,離心率e2=, e2,選C。(2)過雙曲線的左頂點(1,0)作斜率為1的直線:y=x1, 若與雙曲線的兩條漸近線分別相交于點, 聯(lián)立方程組代入消元得, ,x1+x2=2x1x2,又,則B為AC中點,2x1=1+x2,代入解得, b2=9,雙曲線的離心率e=,選A。(3)雙曲線(a)的兩條漸近線的夾角為,則, a2=6,雙曲線的離心率為 ,選D。點評:高考題以離心率為考察點的題目較多,主要實現(xiàn)三元素之間的關(guān)系。例8(1)P是雙曲線的右支上一點,M、N分別是圓(x5)2y24和(x5)2y21上的點,則|PM|PN|的最大值為( )A. 6 B.7 C.8 D.9(2)雙曲線的虛軸長是實軸長的2倍,則A B C D(3)如果雙曲線的兩個焦點分別為、,一條漸近線方程為,那么它的兩條準(zhǔn)線間的距離是( )A B C D解析:(1)設(shè)雙曲線的兩個焦點分別是F1(5,0)與F2(5,0),則這兩點正好是兩圓的圓心,當(dāng)且僅當(dāng)點P與M、F1三點共線以及P與N、F2三點共線時所求的值最大,此時|PM|PN|(|PF1|2)(|PF2|1)1019故選B。(2)雙曲線的虛軸長是實軸長的2倍, m0,且雙曲線方程為, m=,選A。(3)如果雙曲線的兩個焦點分別為、,一條漸近線方程為, ,解得,所以它的兩條準(zhǔn)線間的距離是,選C。點評:關(guān)于雙曲線漸近線、準(zhǔn)線及許多距離問題也是考察的重點。題型5:拋物線方程例9(1))焦點到準(zhǔn)線的距離是2;(2)已知拋物線的焦點坐標(biāo)是F(0,2),求它的標(biāo)準(zhǔn)方程。解析:(1)y=4x,y=4x,x=4y,x=4y;方程是x=8y。點評:由于拋物線的標(biāo)準(zhǔn)方程有四種形式,且每一種形式中都只含一個系數(shù)p,因此只要給出確定p的一個條件,就可以求出拋物線的標(biāo)準(zhǔn)方程。當(dāng)拋物線的焦點坐標(biāo)或準(zhǔn)線方程給定以后,它的標(biāo)準(zhǔn)方程就唯一確定了;若拋物線的焦點坐標(biāo)或準(zhǔn)線方程沒有給定,則所求的標(biāo)準(zhǔn)方程就會有多解。題型6:拋物線的性質(zhì)例10(1)若拋物線的焦點與橢圓的右焦點重合,則的值為( )A B C D(2)拋物線的準(zhǔn)線方程是( ) (A) (B) (C) (D) (3)拋物線的焦點坐標(biāo)為( )(A). (B). (C). (D)解析:(1)橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D;(2)2p8,p4,故準(zhǔn)線方程為x2,選A;(3)(直接計算法)因為p=2 ,所以拋物線y2=4x的焦點坐標(biāo)為 。應(yīng)選B。點評:考察拋物線幾何要素如焦點坐標(biāo)、準(zhǔn)線方程的題目根據(jù)定義直接計算機即可。例11(1)拋物線上的點到直線距離的最小值是( )A B C D(2)對于頂點在原點的拋物線,給出下列條件:焦點在y軸上;焦點在x軸上;拋物線上橫坐標(biāo)為1的點到焦點的距離等于6;拋物線的通徑的長為5;由原點向過焦點的某條直線作垂線,垂足坐標(biāo)為(2,1)。(3)對于拋物線y2=4x上任意一點Q,點P(a,0)都滿足|PQ|a|,則a的取值范圍是( )A.(,0) B.(,2 C.0,2D.(0,2)能使這拋物線方程為y210x的條件是 (要求填寫合適條件的序號)解析:(1)設(shè)拋物線上一點為(m,m2),該點到直線的距離為,當(dāng)m=時,取得最小值為,選A;(2)答案:,解析:從拋物線方程易得,分別按條件、計算求拋物線方程,從而確定。(3)答案:B解析:設(shè)點Q的坐標(biāo)為(,y0),由 |PQ|a|,得y02+(a)2a2.整理,得:y02(y02+168a)0,y020,y02+168a0.即a2+恒成立.而2+的最小值為2.a2.選B。點評:拋物線問題多考察一些距離、最值及范圍問題。五思維

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論