高中數(shù)學第一章集合與函數(shù)概念精練檢測題新人教A版必修_第1頁
高中數(shù)學第一章集合與函數(shù)概念精練檢測題新人教A版必修_第2頁
高中數(shù)學第一章集合與函數(shù)概念精練檢測題新人教A版必修_第3頁
高中數(shù)學第一章集合與函數(shù)概念精練檢測題新人教A版必修_第4頁
高中數(shù)學第一章集合與函數(shù)概念精練檢測題新人教A版必修_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第一章 集合與函數(shù)概念一、選擇題1設(shè)全集U(x,y)| xR,yR,集合M,P(x,y)| yx1,那么CU(MP)等于( )AB(2,3)C(2,3)D(x,y)| yx12若Aa,b,B A,則集合B中元素的個數(shù)是( )A0B1C2D0或1或23函數(shù)yf(x)的圖象與直線x1的公共點數(shù)目是( )A1B0C0或1D1或24設(shè)函數(shù)f(x)2x3,g(x2)f(x),則g(x)的表達式是( )A2x1B2x1C2x3 D2x75. 已知函數(shù)f(x)ax3bx2cxd的圖象如圖所示,則( )Ab(,0)Bb(0,1)(第5題)Cb(1,2)Db(2,)6設(shè)函數(shù)f(x), 若f(4)f(0),f(2)2,則關(guān)于x的方程f(x)x的解的個數(shù)為( )A1B2C3D47設(shè)集合Ax | 0x6,By | 0y2,下列從A到B的對應(yīng)法則f不是映射的是( )Af:xyxBf:xyxCf:xyxDf:xyx8有下面四個命題:偶函數(shù)的圖象一定與y軸相交;奇函數(shù)的圖象一定通過原點;偶函數(shù)的圖象關(guān)于y軸對稱;既是奇函數(shù),又是偶函數(shù)的函數(shù)一定是f(x)0(xR)其中正確命題的個數(shù)是( )A1B2C3D49函數(shù)yx26x10在區(qū)間(2,4)上是( )A遞減函數(shù)B遞增函數(shù)C先遞減再遞增D先遞增再遞減10二次函數(shù)yx2bxc的圖象的對稱軸是x2,則有( )Af(1)f(2)f(4)Bf(2)f(1)f(4)Cf(2)f(4)f(1)Df(4)f(2)f(1)二、填空題11集合3,x,x22x中,x應(yīng)滿足的條件是 12若集合Ax | x2(a1)xb0中,僅有一個元素a,則a_,b_13建造一個容積為8 m3,深為2 m的長方體無蓋水池,如果池底和池壁的造價每平方米分別為120元和80元,那么水池的最低總造價為 元14已知f(x1)x22x,則f(x) ;f(x2) 15y(2a1)x5是減函數(shù),求a的取值范圍 16設(shè)f(x)是R上的奇函數(shù),且當x0,)時,f(x)x(1x3),那么當x(,0時,f(x) 三、解答題17已知集合AxR| ax23x20,其中a為常數(shù),且aR若A是空集,求a的范圍;若A中只有一個元素,求a的值;若A中至多只有一個元素,求a的范圍18已知M2,a,b,N2a,2,b2,且MN,求a,b的值19證明f(x)x3在R上是增函數(shù)20判斷下列函數(shù)的奇偶性:(1)f(x)3x4;(2)f(x)(x1);(3)f(x);(4)f(x)第一章 集合與函數(shù)概念參考答案一、選擇題1B解析:集合M是由直線yx1上除去點(2,3)之后,其余點組成的集合集合P是坐標平面上不在直線yx1上的點組成的集合,那么MP就是坐標平面上不含點(2,3)的所有點組成的集合因此CU(MP)就是點(2,3)的集合CU(MP)(2,3)故選B2D解析:A的子集有,a,b,a,b集合B可能是,a,b,a,b中的某一個,選D3C解析:由函數(shù)的定義知,函數(shù)yf(x)的圖象與直線x1是有可能沒有交點的,如果有交點,那么對于x1僅有一個函數(shù)值4B解析:g(x2)2x32(x2)1,g(x)2x15A解析:要善于從函數(shù)的圖象中分析出函數(shù)的特點(第5題)解法1:設(shè)f(x)ax(x1)(x2)ax33ax22ax,比較系數(shù)得b3a,c2a,d0由f(x)的圖象可以知道f(3)0,所以f(3)3a(31)(32)6a0,即a0,所以b0所以正確答案為A解法2:分別將x0,x1,x2代入f(x)ax3bx2cxd中,求得d0,ab,cb. f(x)b(x3x2x)(x)2由函數(shù)圖象可知,當x(,0)時,f(x)0,又(x)20,b0x(0,1)時,f(x)0,又(x)20,b0x(1,2)時,f(x)0,又(x)20,b0x(2,)時,f(x)0,又(x)20,b0故b(,0)6C解:由f(4)f(0),f(2)2, 得, x0x24x2x f(x)= x0x2由 得x1或x2;由 得x2綜上,方程f(x)x的解的個數(shù)是3個7A解:在集合A中取元素6,在f:xyx作用下應(yīng)得象3,但3不在集合By0y2中,所以答案選A8A提示:不對;不對,因為偶函數(shù)或奇函數(shù)的定義域可能不包含0;正確;不對,既是奇函數(shù)又是偶函數(shù)的函數(shù)還可以為f(x)0,x(a,a)所以答案選A9C 解析:本題可以作出函數(shù)yx26x10的圖象,根據(jù)圖象可知函數(shù)在(2,4)上是先遞減再遞增答案選C10B解析:對稱軸 x2,f(1)f(3). y在2,上單調(diào)遞增,f(4)f(3)f(2),于是 f(2)f(1)f(4) 答案選B二、填空題11x3且x0且x1x3,x22x3,x22xx解析:根據(jù)構(gòu)成集合的元素的互異性,x滿足解得x3且x0且x112a,b解析:由題意知,方程x2(a1)xb0的兩根相等且xa,則(a1)24b0,將xa代入原方程得a2(a1)ab0 ,由解得a,b131 760元解析:設(shè)水池底面的長為x m,水池的總造價為y元,由已知得水池底面面積為4 m2.,水池底面的寬為 m池底的造價 y11204480池壁的造價 y2(22x22)80(4x)80水池的總造價為 yy1y2480(4x)80,即 y480320(x)480320當 , 即x2時,y有最小值為 4803204=1 760元14f(x)x24x3,f(x2)x28x15解析:令x1t,則xt1,因此f(t)(t1)22(t1)t24t3,即f(x)x24x3f(x2)(x2)24(x2)3x28x1515(,)解析:由y =(2a1)x5是減函數(shù),知2a10,a16x(1x3)解析:任取x(,0, 有x0,),f(x)x1(x)3x(1x3),f(x)是奇函數(shù), f(x)f(x). f(x)f(x)x(1x3),即當x(,0時,f(x)的表達式為x(1x3)三、解答題17解:A是空集,方程ax23x20無實數(shù)根 解得aA中只有一個元素,方程ax23x20只有一個實數(shù)根當a0時,方程化為3x20,只有一個實數(shù)根x;當a0時,令98a0,得a,這時一元二次方程ax23x20有兩個相等的實數(shù)根,即A中只有一個元素由以上可知a0,或a時,A中只有一個元素若A中至多只有一個元素,則包括兩種情形:A中有且僅有一個元素;A是空集由的結(jié)果可得a0,或a18解:根據(jù)集合中元素的互異性,有aba0b1a0b0解得 或 或aba0b1再根據(jù)集合中元素的互異性,得 或19證明:設(shè)x1,x2R且x1x2,則f(x1)f(x2)(x1x2)(x1x2)又x1x2(x1x2)2由x1x2得x1x20,且x1x2與x2不會同時為0,否則x1x20與x1x2矛盾,所以 x1x20因此f(x1) f(x2)0,即f(x1)f(x2),f(x)x3 在 R上是增函數(shù)20解:(1) 函數(shù)定義域為x | xR,且x0,0f(x)3(x)43x4f(x),f(x)3x4是偶函數(shù)(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論