




已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
AbstractqSponsors:Alcan-PechineyCompanyandSwissNationalScienceFoundation;GrantNo.200020-101391.*Correspondingauthor.Tel.:+41223792366;fax:+41223792205.E-mailaddresses:yasser.safaepfl.ch,yasser.safaobs.unige.ch(Y.Safa).AAppliedMathematicalModelling33(2009)14791492/locate/apm0307-904X/$-seefrontmatterC2112008ElsevierInc.Allrightsreserved.Aphasechangingproblemmotivatedbythemodellingofthermalproblemcoupledwithmagnetohydro-dynamiceectsinareductioncellisstudied.InasmeltingcelloperatingwithHallHeroultprocess,themetalpartisproducedbytheelectrolysisofaluminiumoxidedissolvedinabathbasedonmoltencryolite1.Var-iousphenomenatakeplaceinsuchacellforwhichatransversesectionisschematicallypicturedinFig.1.Runningfromtheanodesthroughliquidaluminiumandcollectorbars,thesteadyelectriccurrentspreadsintheelectrolyticbath.Theimportantmagneticfieldgeneratedbythecurrentscarriedtothealignmentofcells,coupledwiththecurrentsrunningthroughthecellsthemselvesgivesrisetoafieldofLaplaceforceswhichmaintainsamotionwithinthesetwoconductingliquids.Amagnetohydrodynamicinteractiontakesplaceinthecell.IntheotherhandaheatingsourceisproducedbytheJouleeectduetotheelectricresistivityofthebath.Asystemofpartialdierentialequationsdescribingthethermalbehaviorofaluminiumcellcoupledwithmagnetohy-drodynamiceectsisnumericallysolved.Thethermalmodelisconsideredasatwo-phasesStefanproblemwhichconsistsofanon-linearconvectiondiusionheatequationwithJouleeectasasource.Themagnetohydrodynamicfieldsaregov-ernedbyNavierStokesandbystaticMaxwellequations.Apseudo-evolutionaryscheme(Cherno)isusedtoobtainthestationarysolutiongivingthetemperatureandthefrozenlayerprofileforthesimulationoftheledgesinthecell.Anumer-icalapproximationusingafiniteelementmethodisformulatedtoobtainthefluidvelocity,electricalpotential,magneticinductionandtemperature.Aniterativealgorithmand3-Dnumericalresultsarepresented.C2112008ElsevierInc.Allrightsreserved.Keywords:Aluminiumelectrolysis;Chernoscheme;Heatequation;Magnetohydrodynamics;Ledge;Solidification1.IntroductionNumericalsimulationofthermalproblemscoupledwithmagnetohydrodynamiceectsinaluminiumcellqY.Safa*,M.Flueck,J.RappazInstituteofAnalysisandScientificComputing,EcolePolytechniqueFederaledeLausanne,Station8,1015Lausanne,SwitzerlandReceived27December2006;receivedinrevisedform4February2008;accepted8February2008Availableonline29February2008doi:10.1016/j.apm.2008.02.011ElectrolyteAnodeBlocksFig.1.Transversecrosssectionofaluminiumreductioncell.1480Y.Safaetal./AppliedMathematicalModelling33(2009)14791492Onthewallofthecell,asolidifiedbathlayer,theso-calledledgeiscreated.Theseledgesprotectthecellsidewallfromcorrosiveelectrolyticbathandreducetheheatlossfromthecell(see2page23).Moreover,itsprofilestronglyinfluencesthemagnetohydrodynamicstabilitycausingoscillationsofthealuminiumbathinterfacewhichcoulddecreasethecurrenteciency.Consequentlyanoptimalledgeprofileisoneoftheobjec-tivesofcellsidewalldesign.Thethermalsolidificationprobleminsmeltingcellhasbeentreatedbyseveralauthors35.Asfarasweareaware,thisproblemhasneverbeenconsideredwhencoupledwiththemagnetohydrodynamicfields.Theaimofthispaperistodealwithsuchfieldsinteraction.LetusmentionthatthedetailsonthisproblemcanbefoundinSafasthesis6.Mathematically,theproblemistosolveacoupledsystemofpartialdierentialequationsconsistingoftheheatequationwithJouleeectasasource,MaxwelllawequationswithelectricalconductivityasafunctionoftemperatureandNavierStokesequations.Theinterfacebetweenaluminiumandbathisanunknown.Theledgeisconsideredaselectricalinsulator,thethermalmodelisastationarytwo-phasesStefanproblem.Theoutlineofthispaperisasfollow:inSection2weintroducethephysicalmodel,thealgorithmispresentedAluminiumCathodeLiningFrozenledgeFrozenledgeinSection3andwegivethenumericalresultsinSection4.2.ThemodelInordertointroducethemodelwefirstdescribesomegeometricalandphysicalquantities.2.1.GeneraldescriptionsThegeometryisschematicallydefinedbyFig.1.Weintroducethefollowingnotations:C15XX1X2:fluidsandsolidledge,C15NN1N2:electrodes,C15KXN:domainrepresentingthecellandwedefinetheinterfaces:C15CoX1oX2:freeinterfacebetweenaluminiumandbath,whichisanunknown,C15RioKoNi;i1;2,C15RR1R2:outerboundaryoftheelectrodes.Y.Safaetal./AppliedMathematicalModelling33(2009)147914921481C15Cp:specificheat,C15:latentheat.2.2.PhysicalassumptionsThemodelleansonthefollowingbasichypotheses:1.Thefluidsareimmiscible,incompressibleandNewtonian.2.IneachdomainXi,i=1,2,thefluidsaregovernedbythestationaryNavierStokesequations.3.TheelectromagneticfieldssatisfythestationaryMaxwellsequations,OhmslawismoreoversupposedtobevalidinallthecellK.4.Theelectricalcurrentdensityoutsidethecellisgiven(currentinthecollectorbars).5.Theelectricalconductivityrisfunctionoftemperaturehinthefluidsandelectrodesparts.6.Theviscosityg,thedensityqandthespecificheatCparetemperatureindependent.7.ThevolumesofthedomainsX1andX2havegivenvalues(massconservation).8.TheonlyheatsourceisproducedbytheJouleeectduetothecurrentcrossingthecell.9.Eectsofchemicalreactions7,Marangonieect8,9,surfacetensionaswellasthepresenceofgasflowareneglected.2.3.ThehydrodynamicproblemInthispartweconsiderthetemperaturefieldhandtheelectromagneticfieldsjandbasknown.WechoosetorepresenttheunknowninterfacebetweenaluminiumandbathbyaparametrizationoftheformCC22hx;y;z:zC22hx;y;x;y2DC138,whereDisusuallyarectanglecorrespondingtotheparametrizationofaluminiumcathodeinterface.WedenotethedependenceofX1;X2andCwithrespecttoC22hbyusingTheunknownphysicalfieldswithwhichweshalldealarelistedasfollows:Hydrodynamicfields:C15u:velocityfieldinXi;i1;2;(u0insolidledges),C15p:pressure.Electromagneticfields:C15b:magneticinductionfield,C15e:electricfield,C15j:electriccurrentdensity.Thermalfields:C15H:enthalpy,C15h:temperature.ThematerialpropertiesaredefinedasC15q:massdensity,C15rbandr:electricalconductivityinand,respectively,outsidethebath,C15g:viscosityofthefluids,C15l0:magneticpermeabilityofthevoid,C15k:thermalconductivity,XiXiC22h;i1;2;CCC22h:hx;ydxdyV1;whereV1isthevolumeofaluminium:1C22C22Here3thosethefluids.fieldsThefluidC22C22Inorderinvolvingapenalizationtool.Thevelocityandthepressurewillthenbedefinedinbothliquidsandsolids.WefunctionKisgivenbyCarmanKozeny”law:theDarcy1482Y.Safaetal./AppliedMathematicalModelling33(2009)14791492Whenfs!1,wegetKfs!1andthenu0inthesolidzone.law:rpqgzC0Kujb:IfonlyliquidphaseispresentwehaveK0andtheaboveequationreducestotheusualNavierStokesequa-tion.InsidethemushyzoneKmaybeverylarge,comparedtotheotherterms,andtheaboveequationmimicsqu;ruC0div2lDuC0pqgzIKujbinX1C22hX2C22h:7wherePisthemeanporesizeandCisaconstantobtainedexperimentally(see10).Eq.(1)maythenbemod-ifiedtoKfslCf2sP21C0fs3;addtoNavierStokesequationthetermKfsu;fsisthesolidfractionwhichisafunctionoftemperature.ThepartofXihi=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于能量尺度方法的軟土蠕變特性研究
- 大單元教學在農(nóng)村初中英語閱讀課中的應用研究
- 印度學前教育體系解析
- 體檢健康教育核心要點
- 呼吸內(nèi)科疑難病例討論
- 腸內(nèi)營養(yǎng)護理外科
- 健康本領的多維解析
- 《社會財務共享服務實務》課件-增值稅的計算與申報
- 預防心理健康教育課件
- 中心校校園安全管理培訓
- 2024年華東師大版七年級數(shù)學下冊單元測試題及參考答案
- 民航旅客運輸基礎知識考核試題及答案
- 2024年工業(yè)廢水處理工(技師)技能鑒定考試題庫-下(多選、判斷題)
- 五年級期末家長會含內(nèi)容模板
- 肺功能進修匯報護理課件
- JTGT F20-2015 公路路面基層施工技術細則
- 長春高新:2023年年度審計報告
- 第五章 中國特色社會主義理論體系的形成發(fā)展(一)
- 傳感器制造工藝與質量控制
- 錦江之星企業(yè)文化
- 人工智能在智能檢驗中的應用
評論
0/150
提交評論