![太陽(yáng)能電池板最大功率點(diǎn)跟蹤技術(shù)的比較_第1頁(yè)](http://file1.renrendoc.com/fileroot_temp2/2020-12/17/ba191061-1c9e-4d7e-93b3-2b84ee08bab1/ba191061-1c9e-4d7e-93b3-2b84ee08bab11.gif)
![太陽(yáng)能電池板最大功率點(diǎn)跟蹤技術(shù)的比較_第2頁(yè)](http://file1.renrendoc.com/fileroot_temp2/2020-12/17/ba191061-1c9e-4d7e-93b3-2b84ee08bab1/ba191061-1c9e-4d7e-93b3-2b84ee08bab12.gif)
![太陽(yáng)能電池板最大功率點(diǎn)跟蹤技術(shù)的比較_第3頁(yè)](http://file1.renrendoc.com/fileroot_temp2/2020-12/17/ba191061-1c9e-4d7e-93b3-2b84ee08bab1/ba191061-1c9e-4d7e-93b3-2b84ee08bab13.gif)
![太陽(yáng)能電池板最大功率點(diǎn)跟蹤技術(shù)的比較_第4頁(yè)](http://file1.renrendoc.com/fileroot_temp2/2020-12/17/ba191061-1c9e-4d7e-93b3-2b84ee08bab1/ba191061-1c9e-4d7e-93b3-2b84ee08bab14.gif)
![太陽(yáng)能電池板最大功率點(diǎn)跟蹤技術(shù)的比較_第5頁(yè)](http://file1.renrendoc.com/fileroot_temp2/2020-12/17/ba191061-1c9e-4d7e-93b3-2b84ee08bab1/ba191061-1c9e-4d7e-93b3-2b84ee08bab15.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Comparison of Photovoltaic Array Maximum PowerPoint Tracking Techniques光伏陣列最大功率點(diǎn)跟蹤技術(shù)的比較Trishan Esram, Student Member, IEEE, and Patrick L. Chapman, Senior Member, IEEEAbstractThe many different techniques for maximum power point tracking of photovoltaic (PV) arrays are discussed. The techniques are
2、taken from the literature dating back to the earliest methods. It is shown that at least 19 distinct methods have been introduced in the literature, with many variations on implementation. This paper should serve as a convenient reference for future work in PV power generation.摘要:關(guān)于光伏陣列最大功率點(diǎn)跟蹤的許多不同技
3、術(shù)的討論,著作中的這些方法都可以追溯到最早的方法。結(jié)果表明至少有19種方法已經(jīng)在著作中被介紹,有許多已經(jīng)實(shí)現(xiàn)變形。本文應(yīng)該對(duì)將來(lái)的光伏發(fā)電工作提供一個(gè)方便的參考。Index TermsMaximum power point tracking (MPPT), photovoltaic (PV).索引詞最大功率點(diǎn)跟蹤,光伏。I. INTRODUCTIONI簡(jiǎn)介TRACKING the maximum power point (MPP) of a photovoltaic (PV) array is usually an essential part of a PV system. As such,
4、 many MPP tracking (MPPT) methods have been developed and implemented. The methods vary in complexity, sensors required, convergence speed, cost, range of effectiveness, implementation hardware, popularity, and in other respects. They range from the almost obvious (but not necessarily ineffective) t
5、o the most creative (not necessarily most effective). In fact, so many methods have been developed that it has become difficult to adequately determine which method, newly proposed or existing, is most appropriate for a given PV system.跟蹤光伏陣列的最大功率點(diǎn)通常是光伏系統(tǒng)的主要部分,鑒于此許多最大功率點(diǎn)跟蹤方式已經(jīng)被開(kāi)發(fā)和實(shí)現(xiàn)。這些方法各不相同,如復(fù)雜程度、傳
6、感器需要、收斂速度、花費(fèi)、范圍的有效性、硬件實(shí)現(xiàn)、普及程度以及其他方面。他們幾乎涵蓋了所有的從平淡無(wú)奇(但是不一定不起作用)到最具創(chuàng)造性(不一定都有效)。事實(shí)上,由于許多的方式已經(jīng)被開(kāi)發(fā),在新提出的或是現(xiàn)存的方法中,對(duì)于給定的光伏系統(tǒng)準(zhǔn)確的決定最適合方式的變的困難Given the large number of methods for MPPT, a survey of the methods would be very beneficial to researchers and practitioners in PV systems. Fig. 1 shows the total numb
7、er of MPPT papers from our bibliography per year since the earliest MPPT paper we found. The number of papers per year has grown considerably of the last decades and remains strong. However, recent papers have generally had shorter, more cursory literature reviews that largely summarize or repeat th
8、e literature reviews of previous work. This approach tends to repeat what seems to be conventional wisdom that there are only a handful of MPPT techniques, when in fact there are many. This is due to the sheer volume of MPPT literature to review, conflicting with the need for brevity.鑒于大量的方法來(lái)研究MPPT,
9、在光伏系統(tǒng)中采用調(diào)查的方法對(duì)研究人員和實(shí)踐者都是非常有益的。圖一給出了自從我們發(fā)現(xiàn)最早MPPT論文以來(lái)每年我們文獻(xiàn)目錄中MPPT論文的總數(shù)目,最近幾十年論文的數(shù)量已有了長(zhǎng)足的發(fā)展并且發(fā)展仍然很強(qiáng)勁。然而,最近的論文普遍較短,更多粗略的文學(xué)評(píng)論以致大量的總結(jié)或重復(fù)前人的總結(jié)工作。這種重復(fù)方式似乎是傳統(tǒng)的智慧,以至于只有很少的MPPT技術(shù),但事實(shí)上有很多。這是由于有大量的公開(kāi)的MPPT文獻(xiàn)回顧與簡(jiǎn)潔的需求相沖突。This survey is a single reference of the great majority of papers and techniques presented on
10、MPPT. We compiled over 90 papers pertaining to different MPPT methods published up to the date of submission of this manuscript. It is not our intention to establish a literal chronology of when various techniques were proposed, since the publication date is not necessarily indicative of when a meth
11、od was actually conceived. As is typical of review papers, we have elected not to reference patents. Papers referencing MPPT methods from previous papers without any modification or improvement have also been omitted. It is possible that one or more papers were unintentionally omitted. We apologize
12、if an important method or improvement was left out.這個(gè)調(diào)查參考了絕大多數(shù)提出MPPT的論文和技術(shù)。我們收集了超過(guò)90篇關(guān)于MPPT不同方法的論文的手稿提交的日期。我們的意圖不是當(dāng)不同的技術(shù)被提出時(shí)建立一個(gè)文字年代, 因?yàn)槌霭嫒掌诓荒鼙砻饕环N方法是什么時(shí)間構(gòu)思的。作為典型的評(píng)論性文章,我們推選不涉及專利。如果論文中所涉及的MPP T的方法來(lái)自以前的論文而沒(méi)有任何的修改和改善,則論文將被忽略。一篇或更多的論文被無(wú)意識(shí)的遺漏也是可能的,如果是一種重要的方法或改進(jìn)被遺漏,我們表示歉意。Manuscript received September 24,
13、 2004; revised September 8, 2005. This work was supported by the National Science Foundation ECS-01-34208. Paper no. TEC-00276-2004. The authors are with the Grainger Center for Electric Machinery and Electromechanics, University of Illinois at Urbana-Champaign, Urbana, IL 61801- 2918 USA (e-mail: e
14、; ).Digital Object Identifier 10.1109/TEC.2006.Fig.1. Total number of MPPT papers per year, since 1968.This manuscript steps through a wide variety of methods with a brief discussion and categorization of each. We have avoided discussing slight modifications of existin
15、g methods as distinct methods. For example, a method may have been first presented in context of a boost converter, but later on shown with a boost buck converter, otherwise with minimal change. The manuscript concludes with a discussion on the different methods based on their implementation, the se
16、nsors required, their ability to detect multiple local maxima, their costs, and applications they suit. A table that summarizes the major characteristics of the methods is also provided.這份手稿通過(guò)各種各樣的方式進(jìn)行簡(jiǎn)要的討論和分類,我們討論將稍加修改已經(jīng)存在的方法作為獨(dú)特的方法認(rèn)為無(wú)效。例如,一種方法第一次已經(jīng)在boost升壓電路中提出,但之后又在升降壓變換電路中提出,除此之外,幾乎沒(méi)有變化。手稿以實(shí)現(xiàn)不同方
17、式結(jié)束,根據(jù)他們的實(shí)現(xiàn)、所需要的傳感器、檢測(cè)最大值的能力、成本和適合的應(yīng)用程序。我們提供了一個(gè)總結(jié)主要方法特征的表格。II. PROBLEM OVERVIEWII.問(wèn)題概述Fig. 2 shows the characteristic power curve for a PV array. The problem considered by MPPT techniques is to automatically find the voltage VMPP or current IMPP at which a PV array should operate to obtain the maxim
18、um power output PMPP under a given temperature and irradiance. It is noted that under partial shading conditions, in some cases it is possible to have multiple local maxima, but overall there is still only one true MPP. Most techniques respond to changes in both irradiance and temperature, but some
19、are specifically more useful if temperature is approximately constant. Most techniques would automatically respond to changes in the array due to aging, though some are open-loop and would require periodic fine-tuning. In our context, the array will typically be connected to a power converter that c
20、an vary the current coming from the PV array.圖二給出了光伏陣列的功率曲線。MPPT技術(shù)所要考慮的問(wèn)題是自動(dòng)的發(fā)現(xiàn)光伏陣列中電壓最大功率點(diǎn)或電流最大功率點(diǎn),使該光伏陣列在給定的溫度和光照下得到最大功率輸出。有人指出,在局部遮擋的情況下,有些時(shí)候他可能有多個(gè)極大值,但總體來(lái)說(shuō)他只有一個(gè)真正的最大功率點(diǎn)。大部分技術(shù)應(yīng)對(duì)溫度和光照強(qiáng)度的變換,但是假如溫度接近穩(wěn)定一些特別的方法將更加有用。大部分技術(shù)能自動(dòng)的對(duì)陣列中由老化引起的變化做出響應(yīng),盡管一些是開(kāi)環(huán)控制需要周期性的微調(diào)。本文中,陣列和變流器相連,該變流器可以改變電流來(lái)自光伏陣列。III. MPPT TE
21、CHNIQUESIII.MPPT技術(shù)We introduce the different MPPT techniques below in an arbitrary order. 我們以任意順序介紹不同的MPPT技術(shù)。A. Hill Climbing/P&OAmong all the papers we gathered, much focus has been on hill climbing 18, and perturb and observe (P&O) 925 methods. Hill climbing involves a perturbation in the duty rat
22、io of the power converter, and P&O a perturbation in the operating voltage of the PV array. In the case of a PV array connected to a power converter, perturbing the duty ratio of power converter perturbs the PV array current and consequently perturbs the PV array voltage. Hill climbing and P&O metho
23、ds are different ways to envision the same fundamental method.A 爬坡/擾動(dòng)與觀察在我們收集的所有論文中, 大多數(shù)集中在爬坡方式1-8,和擾動(dòng)與觀察方式9-25。在變流器的一個(gè)工作周期內(nèi)爬坡方式包含一個(gè)擾動(dòng),而擾動(dòng)與觀察方式是包含光伏陣列工作電壓的一個(gè)擾動(dòng)。就光伏陣列與變流器相連而說(shuō),變流器工作周期的擾動(dòng)擾亂光伏陣列的電流,進(jìn)而影響光伏陣列的電壓。爬坡方式和擾動(dòng)與觀察方式是兩種不同的方式來(lái)設(shè)想相同的基本模型。From Fig. 2, it can be seen that incrementing (decrementing) th
24、e voltage increases (decreases) the power when operating on the left of the MPP and decreases (increases) the power when on the right of the MPP. Therefore, if there is an increase in power, the subsequent perturbation should be kept the same to reach the MPP and if there is a decrease in power, the
25、 perturbation should be reversed. This algorithm is summarized in Table I. In 24, it is shown that the algorithm also works when instantaneous (instead of average) PV array voltage and current are used, as long as sampling occurs only once in each switching cycle.Fig. 2. Characteristic PV array powe
26、r curve.TABLE ISUMMARY OF HILL CLIMBING AND P&O ALGORITHM從圖二可以看出,隨著電壓的增長(zhǎng)(下降)當(dāng)作用于最大功率點(diǎn)左側(cè)時(shí)功率增長(zhǎng)(下降),當(dāng)作用與最大功率點(diǎn)右側(cè)時(shí)功率下降(增長(zhǎng))。因此,如果功率增長(zhǎng),則隨之而來(lái)的擾動(dòng)將保持相同達(dá)到最大功率點(diǎn);如果功率下降,擾動(dòng)就會(huì)相反。這種算法的總結(jié)在表I。在24中,給出當(dāng)使用瞬時(shí)(而不是平均值)光伏陣列電壓和電流時(shí)這種算法仍然使用, 只要在一個(gè)開(kāi)關(guān)周期內(nèi)采樣一次即可。圖 2.光伏陣列功率曲線表 I爬坡算法和擾動(dòng)與觀察方法摘要The process is repeated periodically unt
27、il the MPP is reached. The system then oscillates about the MPP. The oscillation can be minimized by reducing the perturbation step size. However, a smaller perturbation size slows down the MPPT. A solution to this conflicting situation is to have a variable perturbation size that gets smaller towar
28、ds the MPP as shown in 8, 12, 15, and 22. In 24, fuzzy logic control is used to optimize the magnitude of the next perturbation. In 20, a two-stage algorithm is proposed that offers faster tracking in the first stage and finer tracking in the second stage. On the other hand, 21 bypasses the first st
29、age by using a nonlinear equation to estimate an initial operating point close to the MPP. 此過(guò)程要反復(fù)進(jìn)行,直到達(dá)到最大功率點(diǎn)。然后系統(tǒng)在最大功率點(diǎn)附近震蕩。在一定程度上可以通過(guò)減小擾動(dòng)步長(zhǎng)來(lái)減小振動(dòng)。然而一個(gè)幅值小的擾動(dòng)可以降低達(dá)到最大功率點(diǎn)的速度。這種矛盾的一種解決辦法是有一個(gè)大小可變的擾動(dòng)以更小的步長(zhǎng)向最大功率點(diǎn)移動(dòng),在81215和22中給出,其中在24中,模糊邏輯控制使下一個(gè)擾動(dòng)量達(dá)到最優(yōu)。在20中提出兩步運(yùn)算法則,第一步采用快速跟蹤,第二步采用最有追蹤。另一方面,21通過(guò)運(yùn)用非線性方程估計(jì)最初
30、的工作點(diǎn)接近最大功率點(diǎn)來(lái)避開(kāi)第一步。Hill climbing and P&O methods can fail under rapidly changing atmospheric conditions as illustrated in Fig. 3. Starting from an operating point A, if atmospheric conditions stay approximately constant, a perturbation V in the PV voltage V will bring the operating point to B and the
31、 perturbation will be reversed due to a decrease in power. However, if the irradiance increases and shifts the power curve from P1 to P2 within one sampling period, the operating point will move from A to C. This represents an increase in power and the perturbation is kept the same. Consequently, th
32、e operating point diverges from the MPP and will keep diverging if the irradiance steadily increases. To ensure that the MPP is tracked even under sudden changes in irradiance, 18 uses a three-point weight comparison P&O method that compares the actual power point to two preceding ones before a deci
33、sion is made about the perturbation sign. In 22, the sampling rate is optimized, while in 24, simply a high sampling rate is used. In 8, toggling has been done between the traditional hill climbing algorithm and a modified adaptive hill climbing mechanism to prevent deviation from the MPP.Fig. 3. Di
34、vergence of hill climbing/P&O from MPP as shown in 9.爬坡方式和擾動(dòng)與觀察方式在快速變化的大氣環(huán)境中不起作用,如圖3.從工作點(diǎn)A開(kāi)始,如果大氣條件保持基本不變,光伏陣列電壓V的擾動(dòng)V將工作點(diǎn)變?yōu)锽,同時(shí)由于功率的下降干擾將被反相??墒牵绻庹諒?qiáng)度增加使一個(gè)周期內(nèi)的功率曲線由P1變?yōu)?P2,工作點(diǎn)將由A點(diǎn)移至C點(diǎn)。這表示功率的增長(zhǎng)和擾動(dòng)保持相同。因此,如果光照強(qiáng)度穩(wěn)定的增加,工作點(diǎn)就會(huì)偏離最大功率點(diǎn)并且保持這種偏離狀態(tài)。為了保證光強(qiáng)突然變化時(shí)最大功率點(diǎn)仍然能夠被追蹤,18應(yīng)用三點(diǎn)比較P&O重要法,該方法是在擾動(dòng)信號(hào)確定之前將先前的兩個(gè)點(diǎn)和真實(shí)
35、的功率點(diǎn)作比較。在22中,采樣頻率是最優(yōu)的,而在24中僅僅采用高頻率的采樣信號(hào)。在8中,將傳統(tǒng)的爬坡模式算法和改進(jìn)的自適應(yīng)的機(jī)制相結(jié)合,以防止與最大功率點(diǎn)的偏差。圖 3. 9中給出的爬坡和P&O模式最大功率點(diǎn)的差異D. Fractional Short-Circuit CurrentFractional results from the fact that, under varying atmospheric conditions, is approximately linearly related to the of the PV array as shown in 40, 42, and
36、4548 (6)where is a proportionality constant. Just like in the fractional technique, has to be determined according to the PV array in use. The constant is generally found to be between 0.78 and 0.92.D.定電流跟蹤法定電流跟蹤法源于這個(gè)事實(shí),在多變的大氣條件下,光伏陣列的與近似的呈線性關(guān)系,在論文40,42,4548 給出 (6)其中為正比例常數(shù)。正如定電壓跟蹤技術(shù)中,由使用的光伏陣列確定。常數(shù)一般
37、在0.78-0.92間取值。Measuring during operation is problematic. An additional switch usually has to be added to the power converter to periodically short the PV array so that can be measured using a current sensor. This increases the number of components and cost. In 48, a boost converter is used, where th
38、e switch in the converter itself can be used to short the PV array. 在運(yùn)行期間測(cè)量是有問(wèn)題的。因此,在變流器上附加一個(gè)開(kāi)關(guān)周期性的短接光伏陣列通過(guò)電流傳感器實(shí)現(xiàn)對(duì)的測(cè)量。這就增加了元器件的數(shù)量和成本。在48中,運(yùn)用一個(gè)升壓變換器,變換器上的開(kāi)關(guān)可以用來(lái)短接光伏陣列。Power output is not only reduced when finding but also because the MPP is never perfectly matched as suggested by (6). In 46, a way o
39、f compensating is proposed such that the MPP is better tracked while atmospheric conditions change. To guarantee proper MPPT in the presence of multiple local maxima, 45 periodically sweeps the PV array voltage from open-circuit to short-circuit to update. Most of the PV systems using fractional in
40、the literature use a DSP. In 48, a simple current feedback control loop is used instead 功率輸出的降低的原因不僅僅由于尋找而且從提出的公式(6)中可以看到,MPP從來(lái)沒(méi)有很好地匹配。在46中,提出一種補(bǔ)償?shù)姆椒ㄒ灾劣谠诖髿猸h(huán)境變化時(shí)最大功率點(diǎn)能很好地被跟蹤。在存在多個(gè)局部最大點(diǎn)時(shí)為了保證完全的最大功率跟蹤,45周期性的快速改變開(kāi)路到短路的電壓來(lái)更新。文獻(xiàn)中大多數(shù)運(yùn)用部分的光伏系統(tǒng)應(yīng)用DSP。在48中用一個(gè)簡(jiǎn)單的電流控制回路來(lái)代替。E. Fuzzy Logic ControlMicrocontrollers
41、have made using fuzzy logic control 4958 popular for MPPT over the last decade. As mentioned in 57, fuzzy logic controllers have the advantages of working with imprecise inputs, not needing an accurate mathematical model, and handling nonlinearityE模糊邏輯控制 在過(guò)去的十年間,微控制器使模糊控制49-58在最大功率跟蹤方面應(yīng)用變得流行。如57,模糊控
42、制在處理不確定輸入和非線性問(wèn)題方面處于有利條件,而他不需要一個(gè)精確地?cái)?shù)學(xué)模型。Fuzzy logic control generally consists of three stages: fuzzification, rule base table lookup, and defuzzification. During fuzzification, numerical input variables are converted into linguistic variables based on a membership function similar to Fig. 5. In this
43、 case, five fuzzy levels are used: NB (negative big), NS (negative small), ZE (zero), PS (positive small), and PB (positive big). In 54 and 55, seven fuzzy levels are used, probably for more accuracy. In Fig. 5, a and b are based on the range of values of the numerical variable. The membership funct
44、ion is sometimes made less symmetric to give more importance to specific fuzzy levels as in 49, 53, 57, and 58.Fig. 5. Membership function for inputs and output of fuzzy logic controller模糊控制一般包括三個(gè)階段:模糊化、查找規(guī)則庫(kù)表、去模糊化。在模糊化過(guò)程中,數(shù)字輸入變量被轉(zhuǎn)化成基于隸屬度函數(shù)的語(yǔ)言變量,如圖5.如此看來(lái)就有五個(gè)模糊子集:NB(負(fù)方向大的偏差)、NS(負(fù)方向小的偏差)、ZE(零)、PS(正方向小
45、的偏差)、PB(正方向大的偏差)。在54和55中,應(yīng)用了七個(gè)模糊子集,可能更精確。在圖5中,a和b的值決定于變量值的范圍。隸屬度函數(shù)有時(shí)候是不對(duì)稱的來(lái)更加重視特殊的模糊子集,像49、53、57、58。圖5 輸入的隸屬度函數(shù)和輸出的模糊控制The inputs to a MPPT fuzzy logic controller are usually an errorand a change in error. The user has the flexibility of choosing how to computeand. Sincevanishes at the MPP, 58 uses
46、the approximation (7)And (8)MPPT模糊控制器的輸入通常是一個(gè)錯(cuò)誤和錯(cuò)誤變化。用戶可以靈活的選擇如何計(jì)算和。鑒于在最大功率點(diǎn)為零,58應(yīng)用近似值: (7)和 (8)Equivalently, (4) is very often used. Once and are calculated and converted to the linguistic variables, the fuzzy logic controller output, which is typically a change in duty ratio of the power converter
47、, can be looked up in a rule base table such as Table II 50.TABLE IIFUZZY RULE BASE TABLE AS SHOWN IN 50相同的,公式(4)經(jīng)常用,一旦和被計(jì)算出來(lái)和轉(zhuǎn)化為語(yǔ)言變量,模糊控制器輸出,該輸出是典型的一個(gè)變流器占空比的變化且能在規(guī)則庫(kù)表中被查出,如表II50.表II50中給出的模糊規(guī)則庫(kù)表The linguistic variables assigned tofor the different combinations of and are based on the power converter being used and al
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 白城2025年吉林大安市事業(yè)單位面向上半年應(yīng)征入伍高校畢業(yè)生招聘5人筆試歷年參考題庫(kù)附帶答案詳解
- 用電器材生命周期管理與預(yù)防性維護(hù)技術(shù)
- 校園市場(chǎng)的網(wǎng)路視頻營(yíng)銷策略探討
- 2025年01月通遼市蒙遼水務(wù)有限責(zé)任公司公開(kāi)招聘6人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 報(bào)刊內(nèi)容深度挖掘考核試卷
- 建筑陶瓷品牌建設(shè)與推廣考核試卷
- 電子商務(wù)平臺(tái)的技術(shù)創(chuàng)新與教育領(lǐng)域融合
- 工藝品行業(yè)展會(huì)策劃與組織考核試卷
- 搪瓷衛(wèi)生潔具行業(yè)政策法規(guī)考核試卷
- 外匯市場(chǎng)技術(shù)分析的高級(jí)應(yīng)用考核試卷
- 2025年大慶職業(yè)學(xué)院高職單招語(yǔ)文2018-2024歷年參考題庫(kù)頻考點(diǎn)含答案解析
- 山東省濟(jì)南市2024-2024學(xué)年高三上學(xué)期1月期末考試 地理 含答案
- 【課件】液體的壓強(qiáng)(課件)-2024-2025學(xué)年人教版物理八年級(jí)下冊(cè)
- 實(shí)施彈性退休制度暫行辦法解讀課件
- 冷凍食品配送售后服務(wù)體系方案
- 發(fā)酵饅頭課件教學(xué)課件
- 《心系國(guó)防 強(qiáng)國(guó)有我》 課件-2024-2025學(xué)年高一上學(xué)期開(kāi)學(xué)第一課國(guó)防教育主題班會(huì)
- 數(shù)與代數(shù)結(jié)構(gòu)圖
- 曹晶《孫悟空大鬧蟠桃會(huì)》教學(xué)設(shè)計(jì)
- 國(guó)際貿(mào)易進(jìn)出口流程圖
- 玄武巖纖維復(fù)合筋工程案例及反饋情況
評(píng)論
0/150
提交評(píng)論