版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、.高中數(shù)學(xué)常用公式及結(jié)論 1 元素與集合的關(guān)系:,.2 集合的子集個(gè)數(shù)共有 個(gè);真子集有個(gè);非空子集有個(gè);非空的真子集有個(gè).3 二次函數(shù)的解析式的三種形式:(1) 一般式;(2) 頂點(diǎn)式;(當(dāng)已知拋物線的頂點(diǎn)坐標(biāo)時(shí),設(shè)為此式)(3) 零點(diǎn)式;(當(dāng)已知拋物線與軸的交點(diǎn)坐標(biāo)為時(shí),設(shè)為此式)(4)切線式:。(當(dāng)已知拋物線與直線相切且切點(diǎn)的橫坐標(biāo)為時(shí),設(shè)為此式)4 真值表: 同真且真,同假或假5 常見(jiàn)結(jié)論的否定形式;原結(jié)論反設(shè)詞原結(jié)論反設(shè)詞是不是至少有一個(gè)一個(gè)也沒(méi)有都是不都是至多有一個(gè)至少有兩個(gè)大于不大于至少有個(gè)至多有()個(gè)小于不小于至多有個(gè)至少有()個(gè)對(duì)所有,成立存在某,不成立或且對(duì)任何,不成立存在
2、某,成立且或6 四種命題的相互關(guān)系(下圖):(原命題與逆否命題同真同假;逆命題與否命題同真同假.)原命題互逆逆命題若則若則互互互為為互否否逆逆否 否否命題逆否命題若非則非互逆若非則非充要條件: (1)、,則P是q的充分條件,反之,q是p的必要條件; (2)、,且q p,則P是q的充分不必要條件;(3)、p p ,且,則P是q的必要不充分條件;4、p p ,且q p,則P是q的既不充分又不必要條件。7 函數(shù)單調(diào)性:增函數(shù):(1)、文字描述是:y隨x的增大而增大。(2)、數(shù)學(xué)符號(hào)表述是:設(shè)f(x)在xD上有定義,若對(duì)任意的,都有成立,則就叫f(x)在xD上是增函數(shù)。D則就是f(x)的遞增區(qū)間。減函
3、數(shù):(1)、文字描述是:y隨x的增大而減小。(2)、數(shù)學(xué)符號(hào)表述是:設(shè)f(x)在xD上有定義,若對(duì)任意的,都有成立,則就叫f(x)在xD上是減函數(shù)。D則就是f(x)的遞減區(qū)間。單調(diào)性性質(zhì):(1)、增函數(shù)+增函數(shù)=增函數(shù);(2)、減函數(shù)+減函數(shù)=減函數(shù); (3)、增函數(shù)-減函數(shù)=增函數(shù);(4)、減函數(shù)-增函數(shù)=減函數(shù);注:上述結(jié)果中的函數(shù)的定義域一般情況下是要變的,是等號(hào)左邊兩個(gè)函數(shù)定義域的交集。復(fù)合函數(shù)的單調(diào)性:函數(shù) 單調(diào)單調(diào)性內(nèi)層函數(shù)外層函數(shù)復(fù)合函數(shù)等價(jià)關(guān)系:(1)設(shè)那么上是增函數(shù);上是減函數(shù).(2)設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù). 8函數(shù)的奇偶性:(注:是奇偶函
4、數(shù)的前提條件是:定義域必須關(guān)于原點(diǎn)對(duì)稱)奇函數(shù):定義:在前提條件下,若有,則f(x)就是奇函數(shù)。性質(zhì):(1)、奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱;(2)、奇函數(shù)在x0和x0和x 0時(shí),有.或.42 斜率公式 :(、).43 直線的五種方程:(1)點(diǎn)斜式 (直線過(guò)點(diǎn),且斜率為)(2)斜截式 (b為直線在y軸上的截距).(3)兩點(diǎn)式 ()(、 ().兩點(diǎn)式的推廣:(無(wú)任何限制條件?。?4)截距式 (分別為直線的橫、縱截距,)(5)一般式 (其中A、B不同時(shí)為0).直線的法向量:,方向向量:44 夾角公式:(1).(,,)(2).(,).直線時(shí),直線l1與l2的夾角是.45 到的角公式:(1).(,,)(2)
5、.(,).直線時(shí),直線l1到l2的角是.46 點(diǎn)到直線的距離 :(點(diǎn),直線:).47 圓的四種方程:(1)圓的標(biāo)準(zhǔn)方程 .(2)圓的一般方程 (0).(3)圓的參數(shù)方程 .(4)圓的直徑式方程 (圓的直徑的端點(diǎn)是、).48點(diǎn)與圓的位置關(guān)系:點(diǎn)與圓的位置關(guān)系有三種:若,則點(diǎn)在圓外;點(diǎn)在圓上; 點(diǎn)在圓內(nèi).49直線與圓的位置關(guān)系:直線與圓的位置關(guān)系有三種():;.50 兩圓位置關(guān)系的判定方法:設(shè)兩圓圓心分別為O1,O2,半徑分別為r1,r2,則:;.51 橢圓的參數(shù)方程是.離心率,準(zhǔn)線到中心的距離為,焦點(diǎn)到對(duì)應(yīng)準(zhǔn)線的距離(焦準(zhǔn)距)。過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的弦叫通經(jīng),其長(zhǎng)度為:.52 橢圓焦半徑公式及兩焦
6、半徑與焦距構(gòu)成三角形的面積:,;。53橢圓的的內(nèi)外部:(1)點(diǎn)在橢圓的內(nèi)部.(2)點(diǎn)在橢圓的外部.54 橢圓的切線方程:(1) 橢圓上一點(diǎn)處的切線方程是. (2)過(guò)橢圓外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是. (3)橢圓與直線相切的條件是.55 雙曲線的離心率,準(zhǔn)線到中心的距離為,焦點(diǎn)到對(duì)應(yīng)準(zhǔn)線的距離(焦準(zhǔn)距)。過(guò)焦點(diǎn)且垂直于實(shí)軸的弦叫通經(jīng),其長(zhǎng)度為:.焦半徑公式,兩焦半徑與焦距構(gòu)成三角形的面積。56 雙曲線的方程與漸近線方程的關(guān)系:(1)若雙曲線方程為漸近線方程:. (2)若漸近線方程為雙曲線可設(shè)為.(3)若雙曲線與有公共漸近線,可設(shè)為(,焦點(diǎn)在x軸上,焦點(diǎn)在y軸上).(4) 焦點(diǎn)到漸近線的距離總
7、是。57雙曲線的切線方程: (1)雙曲線上一點(diǎn)處的切線方程是. (2)過(guò)雙曲線外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是. (3)雙曲線與直線相切的條件是.58拋物線的焦半徑公式:拋物線焦半徑.過(guò)焦點(diǎn)弦長(zhǎng).59二次函數(shù)的圖象是拋物線:(1)頂點(diǎn)坐標(biāo)為;(2)焦點(diǎn)的坐標(biāo)為;(3)準(zhǔn)線方程是.60 直線與圓錐曲線相交的弦長(zhǎng)公式 或(弦端點(diǎn)A,由方程 消去y得到,為直線的傾斜角,為直線的斜率,. 61證明直線與平面的平行的思考途徑:(1)轉(zhuǎn)化為直線與平面無(wú)公共點(diǎn);(2)轉(zhuǎn)化為線線平行;(3)轉(zhuǎn)化為面面平行.62證明直線與平面垂直的思考途徑:(1)轉(zhuǎn)化為該直線與平面內(nèi)任一直線垂直;(2)轉(zhuǎn)化為該直線與平面內(nèi)相交
8、二直線垂直;(3)轉(zhuǎn)化為該直線與平面的一條垂線平行;(4)轉(zhuǎn)化為該直線垂直于另一個(gè)平行平面。63證明平面與平面的垂直的思考途徑:(1)轉(zhuǎn)化為判斷二面角是直二面角;(2)轉(zhuǎn)化為線面垂直;(3) 轉(zhuǎn)化為兩平面的法向量平行。64 向量的直角坐標(biāo)運(yùn)算:設(shè),則:(1) ;(2) ;(3) (R);(4) ;65 夾角公式:設(shè),則.66 異面直線間的距離 :(是兩異面直線,其公垂向量為,是上任一點(diǎn),為間的距離).67點(diǎn)到平面的距離:(為平面的法向量,是的一條斜線段).68球的半徑是R,則其體積,其表面積69球的組合體: (1)球與長(zhǎng)方體的組合體: 長(zhǎng)方體的外接球的直徑是長(zhǎng)方體的體對(duì)角線長(zhǎng). (2)球與正方
9、體的組合體:正方體的內(nèi)切球的直徑是正方體的棱長(zhǎng), 正方體的棱切球的直徑是正方體的面對(duì)角線長(zhǎng), 正方體的外接球的直徑是正方體的體對(duì)角線長(zhǎng). (3)球與正四面體的組合體: 棱長(zhǎng)為的正四面體的內(nèi)切球的半徑為(正四面體高的),外接球的半徑為(正四面體高的).70 分類計(jì)數(shù)原理(加法原理):.分步計(jì)數(shù)原理(乘法原理):.71排列數(shù)公式 :=.(,N*,且)規(guī)定.72 組合數(shù)公式:=(N*,且).組合數(shù)的兩個(gè)性質(zhì):(1)= ;(2) +=.規(guī)定.73 二項(xiàng)式定理 ;二項(xiàng)展開(kāi)式的通項(xiàng)公式.的展開(kāi)式的系數(shù)關(guān)系:; ;。74 互斥事件A,B分別發(fā)生的概率的和:P(AB)=P(A)P(B)個(gè)互斥事件分別發(fā)生的概率
10、的和:P(A1A2An)=P(A1)P(A2)P(An)75 獨(dú)立事件A,B同時(shí)發(fā)生的概率:P(AB)= P(A)P(B).n個(gè)獨(dú)立事件同時(shí)發(fā)生的概率:P(A1 A2 An)=P(A1) P(A2) P(An)76 n次獨(dú)立重復(fù)試驗(yàn)中某事件恰好發(fā)生k次的概率:77 數(shù)學(xué)期望:數(shù)學(xué)期望的性質(zhì)(1). (2)若,則.(3) 若服從幾何分布,且,則.78方差:標(biāo)準(zhǔn)差:=.方差的性質(zhì):(1);(2)若,則.(3) 若服從幾何分布,且,則.方差與期望的關(guān)系:.79正態(tài)分布密度函數(shù):,式中的實(shí)數(shù),(0)是參數(shù),分別表示個(gè)體的平均數(shù)與標(biāo)準(zhǔn)差.對(duì)于,取值小于x的概率:.80 在處的導(dǎo)數(shù)(或變化率):.瞬時(shí)速度
11、:.瞬時(shí)加速度:.81 函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義:函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是.82 幾種常見(jiàn)函數(shù)的導(dǎo)數(shù):(1) (C為常數(shù)).(2) .(3) .(4) .(5) ;.(6) ; .83 導(dǎo)數(shù)的運(yùn)算法則:(1).(2).(3).84 判別是極大(?。┲档姆椒ǎ寒?dāng)函數(shù)在點(diǎn)處連續(xù)時(shí),(1)如果在附近的左側(cè),右側(cè),則是極大值;(2)如果在附近的左側(cè),右側(cè),則是極小值.85 復(fù)數(shù)的相等:.()86 復(fù)數(shù)的模(或絕對(duì)值)=.87 復(fù)平面上的兩點(diǎn)間的距離公式: (,).88實(shí)系數(shù)一元二次方程的解 實(shí)系數(shù)一元二次方程,若,則;若,則;若,它在實(shí)數(shù)集內(nèi)沒(méi)有實(shí)數(shù)根;在復(fù)數(shù)集內(nèi)有且
12、僅有兩個(gè)共軛復(fù)數(shù)根.高中數(shù)學(xué)公式提升一、集合、簡(jiǎn)易邏輯、函數(shù)1 研究集合必須注意集合元素的特征即三性(確定,互異,無(wú)序); 已知集合A=x,xy,lgxy,集合B=0,x,y,且A=B,則x+y= 2 研究集合,首先必須弄清代表元素,才能理解集合的意義。已知集合M=yy=x2 ,xR,N=yy=x2+1,xR,求MN;與集合M=(x,y)y=x2 ,xR,N=(x,y)y=x2+1,xR求MN的區(qū)別。3 集合 A、B,時(shí),你是否注意到“極端”情況:或;求集合的子集時(shí)是否忘記. 例如:對(duì)一切恒成立,求a的取植范圍,你討論了a2的情況了嗎? 4 對(duì)于含有n個(gè)元素的有限集合M, 其子集、真子集、非空
13、子集、非空真子集的個(gè)數(shù)依次為 如滿足條件的集合M共有多少個(gè)5 解集合問(wèn)題的基本工具是韋恩圖; 某文藝小組共有10名成員,每人至少會(huì)唱歌和跳舞中的一項(xiàng),其中7人會(huì)唱歌跳舞5人會(huì),現(xiàn)從中選出會(huì)唱歌和會(huì)跳舞的各一人,表演一個(gè)唱歌和一個(gè)跳舞節(jié)目,問(wèn)有多少種不同的選法?6 兩集合之間的關(guān)系。7 (CUA)( CU B) = CU(AB) (CUA)( CUB) = CU(AB);8、可以判斷真假的語(yǔ)句叫做命題.邏輯連接詞有“或”、“且”和“非”.p、q形式的復(fù)合命題的真值表: (真且真,同假或假)pqP且qP或q真真真真真假假真假真假真假假假假9、 命題的四種形式及其相互關(guān)系原命題若p則q逆命題若q則p
14、否命題若則q逆否命題若則:互逆互互互為互否逆逆否否否否否否互逆原命題與逆否命題同真同假;逆命題與否命題同真同假.10、你對(duì)映射的概念了解了嗎?映射f:AB中,A中元素的任意性和B中與它對(duì)應(yīng)元素的唯一性,哪幾種對(duì)應(yīng)能夠成映射?11、函數(shù)的幾個(gè)重要性質(zhì): 如果函數(shù)對(duì)于一切,都有或f(2a-x)=f(x),那么函數(shù)的圖象關(guān)于直線對(duì)稱. 函數(shù)與函數(shù)的圖象關(guān)于直線對(duì)稱; 函數(shù)與函數(shù)的圖象關(guān)于直線對(duì)稱; 函數(shù)與函數(shù)的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱. 若奇函數(shù)在區(qū)間上是遞增函數(shù),則在區(qū)間上也是遞增函數(shù) 若偶函數(shù)在區(qū)間上是遞增函數(shù),則在區(qū)間上是遞減函數(shù) 函數(shù)的圖象是把函數(shù)的圖象沿x軸向左平移a個(gè)單位得到的;函數(shù)(的圖象
15、是把函數(shù)的圖象沿x軸向右平移個(gè)單位得到的;函數(shù)+a的圖象是把函數(shù)助圖象沿y軸向上平移a個(gè)單位得到的;函數(shù)+a的圖象是把函數(shù)助圖象沿y軸向下平移個(gè)單位得到的.12、求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),你標(biāo)注了該函數(shù)的定義域了嗎?13、求函數(shù)的定義域的常見(jiàn)類型記住了嗎?函數(shù)y=的定義域是 ;復(fù)合函數(shù)的定義域弄清了嗎?函數(shù)的定義域是0,1,求的定義域. 函數(shù)的定義域是, 求函數(shù)的定義域14、一個(gè)函數(shù)的奇偶性時(shí),你注意到函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱這個(gè)必要非充分條件了嗎? 在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的乘積是奇函數(shù);15、據(jù)定義證明函數(shù)
16、的單調(diào)性時(shí),規(guī)范格式是什么?(取值, 作差, 判正負(fù).)可別忘了導(dǎo)數(shù)也是判定函數(shù)單調(diào)性的一種重要方法。16、函數(shù)的單調(diào)區(qū)間嗎?(該函數(shù)在和上單調(diào)遞增;在 和上單調(diào)遞減)這可是一個(gè)應(yīng)用廣泛的函數(shù)!17、函數(shù)問(wèn)題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論呀.18、換底公式及它的變形,你掌握了嗎?()19、 你還記得對(duì)數(shù)恒等式嗎?()20、 “實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化為“”,你是否注意到必須;當(dāng)a=0時(shí),“方程有解”不能轉(zhuǎn)化為若原題中沒(méi)有指出是“二次”方程、函數(shù)或不等式,你是否考慮到二次項(xiàng)系數(shù)可能為零的情形?二、三角、不等式21、 三角公式記住
17、了嗎??jī)山呛团c差的公式_; 二倍角公式:_;解題時(shí)本著“三看”的基本原則來(lái)進(jìn)行:“看角,看函數(shù),看特征”,基本的技巧有:巧變角,公式變形使用,化切割為弦,用倍角公式將高次降次, 22、 在解三角問(wèn)題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?正切函數(shù)在整個(gè)定義域內(nèi)是否為單調(diào)函數(shù)?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?23、 在三角中,你知道1等于什么嗎?(這些統(tǒng)稱為1的代換) 常數(shù) “1”的種種代換有著廣泛的應(yīng)用(還有同角關(guān)系公式:商的關(guān)系,倒數(shù)關(guān)系,平方關(guān)系;誘導(dǎo)公試:奇變偶不變,符號(hào)看象限)24、 在三角的恒等變形中,要特別注意角的各種變換(如 等)25、 你還記得三角化簡(jiǎn)題的要求是什么
18、嗎?項(xiàng)數(shù)最少、函數(shù)種類最少、分母不含三角函數(shù)、且能求出值的式子,一定要算出值來(lái))26、 你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角. 異角化同角,異名化同名,高次化低次);你還記得降冪公式嗎?cos2x=(1+cos2x)/2;sin2x=(1-cos2x)/227、 你還記得某些特殊角的三角函數(shù)值嗎?()28、 你還記得在弧度制下弧長(zhǎng)公式和扇形面積公式嗎?()29、 輔助角公式:(其中角所在的象限由a, b 的符號(hào)確定,角的值由確定)在求最值、化簡(jiǎn)時(shí)起著重要作用.30、 三角函數(shù)(正弦、余弦、正切)圖象的草圖能迅速畫(huà)出嗎?能寫(xiě)出他們的單調(diào)區(qū)、對(duì)稱軸,取最值時(shí)
19、的x值的集合嗎?(別忘了kZ)三角函數(shù)性質(zhì)要記牢。函數(shù)y=k的圖象及性質(zhì): 振幅|A|,周期T=, 若x=x0為此函數(shù)的對(duì)稱軸,則x0是使y取到最值的點(diǎn),反之亦然,使y取到最值的x的集合為 , 當(dāng)時(shí)函數(shù)的增區(qū)間為 ,減區(qū)間為 ;當(dāng)時(shí)要利用誘導(dǎo)公式將變?yōu)榇笥诹愫笤儆蒙厦娴慕Y(jié)論。五點(diǎn)作圖法:令依次為 求出x與y,依點(diǎn)作圖 31、 三角函數(shù)圖像變換還記得嗎?平移公(1)如果點(diǎn) P(x,y)按向量 平移至P(x,y),則 (2) 曲線f(x,y)=0沿向量平移后的方程為f(x-h,y-k)=032、 有關(guān)斜三角形的幾個(gè)結(jié)論:(1)正弦定理: (2)余弦定理: (3)面積公式33、 在用三角函數(shù)表示直線
20、的傾斜角、兩條異面直線所成的角等時(shí),你是否注意到它們各自的取值范圍及意義? 異面直線所成的角、直線與平面所成的角、向量的夾角的取值范圍依次是. 直線的傾斜角、到的角、與的夾角的取值范圍依次是34、 不等式的解集的規(guī)范書(shū)寫(xiě)格式是什么?(一般要寫(xiě)成集合的表達(dá)式)35、 分式不等式的一般解題思路是什么?(移項(xiàng)通分,分子分母分解因式,x的系數(shù)變?yōu)檎担娲┡蓟兀?6、 含有兩個(gè)絕對(duì)值的不等式如何去絕對(duì)值?(一般是根據(jù)定義分類討論)37、 利用重要不等式 以及變式等求函數(shù)的最值時(shí),你是否注意到a,b(或a ,b非負(fù)),且“等號(hào)成立”時(shí)的條件,積ab或和ab其中之一應(yīng)是定值?(一正二定三相等)38、 (當(dāng)
21、且僅當(dāng)時(shí),取等號(hào)); a、b、cR,(當(dāng)且僅當(dāng)時(shí),取等號(hào));39、 在解含有參數(shù)的不等式時(shí),怎樣進(jìn)行討論?(特別是指數(shù)和對(duì)數(shù)的底或)討論完之后,要寫(xiě)出:綜上所述,原不等式的解集是40、 解含參數(shù)的不等式的通法是“定義域?yàn)榍疤幔瘮?shù)增減性為基礎(chǔ),分類討論是關(guān)鍵”41、 對(duì)于不等式恒成立問(wèn)題,常用的處理方式?(轉(zhuǎn)化為最值問(wèn)題)三、數(shù)列42、 等差數(shù)列中的重要性質(zhì):(1)若,則;(2);(3)若三數(shù)成等差數(shù)列,則可設(shè)為a-d、a、a+d;若為四數(shù)則可設(shè)為a-、a-、a+、a+;(4)在等差數(shù)列中,求Sn 的最大(小)值,其思路是找出某一項(xiàng),使這項(xiàng)及它前面的項(xiàng)皆取正(負(fù))值或0,而它后面各項(xiàng)皆取負(fù)(正
22、)值,則從第一項(xiàng)起到該項(xiàng)的各項(xiàng)的和為最大(小).即:當(dāng)a1 0,d0,解不等式組 an 0 an+1 0 可得Sn 達(dá)最大值時(shí)的n的值;當(dāng)a1 0,解不等式組 an 0 an+1 0 可得Sn 達(dá)最小值時(shí)的n的值;(5)若an ,bn 是等差數(shù)列,Sn ,Tn 分別為an ,bn 的前n項(xiàng)和,則。.(6).若是等差數(shù)列,則是等比數(shù)列,若是等比數(shù)列且,則是等差數(shù)列.43、 等比數(shù)列中的重要性質(zhì):(1)若,則;(2),成等比數(shù)列44、 你是否注意到在應(yīng)用等比數(shù)列求前n項(xiàng)和時(shí),需要分類討論(時(shí),;時(shí),)45、 等比數(shù)列的一個(gè)求和公式:設(shè)等比數(shù)列的前n項(xiàng)和為,公比為,則46、 等差數(shù)列的一個(gè)性質(zhì):設(shè)是
23、數(shù)列的前n項(xiàng)和,為等差數(shù)列的充要條件是 (a, b為常數(shù))其公差是2a.47、 你知道怎樣的數(shù)列求和時(shí)要用“錯(cuò)位相減”法嗎?(若,其中是等差數(shù)列,是等比數(shù)列,求的前n項(xiàng)的和)48、 用求數(shù)列的通項(xiàng)公式時(shí),你注意到了嗎?49、 你還記得裂項(xiàng)求和嗎?(如 .)四、排列組合、二項(xiàng)式定理50、 解排列組合問(wèn)題的依據(jù)是:分類相加,分步相乘,有序排列,無(wú)序組合51、 解排列組合問(wèn)題的規(guī)律是:相鄰問(wèn)題捆綁法;不鄰問(wèn)題插空法;多排問(wèn)題單排法;定位問(wèn)題優(yōu)先法;多元問(wèn)題分類法;有序分配問(wèn)題法;選取問(wèn)題先排后排法;至多至少問(wèn)題間接法,還記得什么時(shí)候用隔板法?52、 排列數(shù)公式是: 組合數(shù)公式是: 排列數(shù)與組合數(shù)的關(guān)
24、系是:組合數(shù)性質(zhì):= += = 二項(xiàng)式定理: 二項(xiàng)展開(kāi)式的通項(xiàng)公式:五、立體幾何53、 有關(guān)平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:線/線線/面面/面,線線線面面面,垂直常用向量來(lái)證。54、 作出二面角的平面角主要方法是什么?(定義法、三垂線法)三垂線法:一定平面,二作垂線,三作斜線,射影可見(jiàn).55、 二面角的求法主要有:解直角三角形、余弦定理、射影面積法、法向量56、 求點(diǎn)到面的距離的常規(guī)方法是什么?(直接法、等體積變換法、法向量法)57、 你記住三垂線定理及其逆定理了嗎?58、 有關(guān)球面上兩點(diǎn)的球面距離的求法主要是找球心角,常常與經(jīng)度及緯度聯(lián)系在一起,你還記得經(jīng)度及緯度的含義嗎?(經(jīng)度是面面
25、角;緯度是線面角)59、 你還記得簡(jiǎn)單多面體的歐拉公式嗎?(V+F-E=2,其中V為頂點(diǎn)數(shù),E是棱數(shù),F(xiàn)為面數(shù)),棱的兩種算法,你還記得嗎?(多面體每面為n邊形,則E=;多面體每個(gè)頂點(diǎn)出發(fā)有m條棱,則E=)六、解析幾何60、 設(shè)直線方程時(shí),一般可設(shè)直線的斜率為k,你是否注意到直線垂直于x軸時(shí),斜率k不存在的情況?(例如:一條直線經(jīng)過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為8,求此弦所在直線的方程。該題就要注意,不要漏掉x+3=0這一解.)61、 定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清)線段的定比分點(diǎn)坐標(biāo)公式設(shè)P(x,y) ,P1(x1,y1) ,P2(x2,y2) ,且 ,則 中點(diǎn)坐標(biāo)公式
26、62、 若,則ABC的重心G的坐標(biāo)是在利用定比分點(diǎn)解題時(shí),你注意到了嗎?63、 在解析幾何中,研究?jī)蓷l直線的位置關(guān)系時(shí),有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合.64、 直線方程的幾種形式:點(diǎn)斜式、斜截式、兩點(diǎn)式、截矩式、一般式以及各種形式的局限性.(如點(diǎn)斜式不適用于斜率不存在的直線)65、 對(duì)不重合的兩條直線,有:; 66、 直線在坐標(biāo)軸上的截矩可正,可負(fù),也可為0.67、 直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng) a=0時(shí),直線y=kx在兩條坐標(biāo)軸上的截距都是0,也是截距相等68、 兩直線和的距離公式d=69、 直線的方向向量還記得嗎?
27、直線的方向向量與直線的斜率有何關(guān)系?當(dāng)直線L的方向向量為=(x0,y0)時(shí),直線斜率k=;當(dāng)直線斜率為k時(shí),直線的方向向量=70、 到角公式及夾角公式,何時(shí)用?71、 處理直線與圓的位置關(guān)系有兩種方法:(1)點(diǎn)到直線的距離;(2)直線方程與圓的方程聯(lián)立,判別式.一般來(lái)說(shuō),前者更簡(jiǎn)捷72、 處理圓與圓的位置關(guān)系,可用兩圓的圓心距與半徑之間的關(guān)系.73、 在圓中,注意利用半徑、半弦長(zhǎng)、及弦心距組成的直角三角形并且要更多聯(lián)想到圓的幾何性質(zhì).74、 在利用圓錐曲線統(tǒng)一定義解題時(shí),你是否注意到定義中的定比的分子分母的順序??jī)蓚€(gè)定義常常結(jié)伴而用,有時(shí)對(duì)我們解題有很大的幫助,有關(guān)過(guò)焦點(diǎn)弦問(wèn)題用第二定義可能更
28、為方便。(焦半徑公式:橢圓:|PF1|= ;|PF2|= ;雙曲線:|PF1|= ;|PF2|= (其中F1為左焦點(diǎn)F2為右焦點(diǎn) );拋物線:|PF|=|x0|+)75、 在用圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?判別式的限制(求交點(diǎn),弦長(zhǎng),中點(diǎn),斜率,對(duì)稱,存在性問(wèn)題都在下進(jìn)行).76、 橢圓中,a,b,c的關(guān)系為;離心率e=;準(zhǔn)線方程為;焦點(diǎn)到相應(yīng)準(zhǔn)線距離為 雙曲線中,a,b,c的關(guān)系為;離心率e=;準(zhǔn)線方程為;焦點(diǎn)到相應(yīng)準(zhǔn)線距離為 77、 通徑是拋物線的所有焦點(diǎn)弦中最短的弦.78、 你知道嗎?解析幾何中解題關(guān)鍵就是把題目中的幾何條件代數(shù)化,特別是一些很
29、不起眼的條件,有時(shí)起著關(guān)鍵的作用:如:點(diǎn)在曲線上、相交、共線、以某線段為直徑的圓經(jīng)過(guò)某點(diǎn)、夾角、垂直、平行、中點(diǎn)、角平分線、中點(diǎn)弦問(wèn)題等。圓和橢圓參數(shù)方程不要忘,有時(shí)在解決問(wèn)題時(shí)很方便。數(shù)形結(jié)合是解決解幾問(wèn)題的重要思想方法,要記得畫(huà)圖分析喲!79、 你注意到了嗎?求軌跡與求軌跡方程有區(qū)別的。求軌跡方程可別忘了尋求范圍呀!80、 在解決有關(guān)線性規(guī)劃應(yīng)用問(wèn)題時(shí),有以下幾個(gè)步驟:先找約束條件,作出可行域,明確目標(biāo)函數(shù),其中關(guān)鍵就是要搞清目標(biāo)函數(shù)的幾何意義,找可行域時(shí)要注意把直線方程中的y的系數(shù)變?yōu)檎怠H纾呵?5a-2b4,-33a+b3求a+b的取值范圍,但也可以不用線性規(guī)劃。七、向量81、 兩向
30、量平行或共線的條件,它們兩種形式表示,你還記得嗎?注意是向量平行的充分不必要條件。(定義及坐標(biāo)表示)82、 向量可以解決有關(guān)夾角、距離、平行和垂直等問(wèn)題,要記住以下公式:|2=,cos=83、 利用向量平行或垂直來(lái)解決解析幾何中的平行和垂直問(wèn)題可以不用討論斜率不存在的情況,要注意是向量夾角為鈍角的必要而非充分條件。84、 向量的運(yùn)算要和實(shí)數(shù)運(yùn)算有區(qū)別:如兩邊不能約去一個(gè)向量,向量的乘法不滿足結(jié)合律,即,切記兩向量不能相除。85、 你還記得向量基本定理的幾何意義嗎?它的實(shí)質(zhì)就是平面內(nèi)的任何向量都可以用平面內(nèi)任意不共線的兩個(gè)向量線性表示,它的系數(shù)的含義與求法你清楚嗎?86、 一個(gè)封閉圖形首尾連接而
31、成的向量和為零向量,這是題目中的天然條件,要注意運(yùn)用,對(duì)于一個(gè)向量等式,可以移項(xiàng),兩邊平方、兩邊同乘以一個(gè)實(shí)數(shù),兩邊同時(shí)取模,兩邊同乘以 一個(gè)向量,但不能兩邊同除以一個(gè)向量。87、 向量的直角坐標(biāo)運(yùn)算 設(shè),則 , 設(shè)A=, B=,則- = 八、導(dǎo)數(shù)88、 導(dǎo)數(shù)的幾何意義即曲線在該點(diǎn)處的切線的斜率,學(xué)會(huì)定義的多種變形。89、 幾個(gè)重要函數(shù)的導(dǎo)數(shù):,(C為常數(shù))導(dǎo)數(shù)的四運(yùn)算法則90、 利用導(dǎo)數(shù)可以證明或判斷函數(shù)的單調(diào)性,注意當(dāng)f (x)0或f (x)0,帶上等號(hào)。91、 (x0)=0是函數(shù)f(x)在x0處取得極值的非充分非必要條件,f(x)在x0處取得極值的充分要條件是什么?92、 利用導(dǎo)數(shù)求最值
32、的步驟:(1)求導(dǎo)數(shù)(2)求方程=0的根(3)計(jì)算極值及端點(diǎn)函數(shù)值的大?。?)根據(jù)上述值的大小,確定最大值與最小值.93、 求函數(shù)極值的方法:先找定義域,再求導(dǎo),找出定義域的分界點(diǎn),根據(jù)單調(diào)性求出極值。告訴函數(shù)的極值這一條件,相當(dāng)于給出了兩個(gè)條件:函數(shù)在此點(diǎn)導(dǎo)數(shù)值為零,函數(shù)在此點(diǎn)的值為定值。 九、概率統(tǒng)計(jì)94、 有關(guān)某一事件概率的求法:把所求的事件轉(zhuǎn)化為等可能事件的概率(常常采用排列組合的知識(shí)),轉(zhuǎn)化為若干個(gè)互斥事件中有一個(gè)發(fā)生的概率,利用對(duì)立事件的概率,轉(zhuǎn)化為相互獨(dú)立事件同時(shí)發(fā)生的概率,看作某一事件在n次實(shí)驗(yàn)中恰有k次發(fā)生的概率,但要注意公式的使用條件。(1)若事件A、B為互斥事件,則P(A+B)=P(A)+P(B)(2)若事件A、B為相互獨(dú)立事件,則P(AB)=P(A)P(B)(3)若事件A、B為對(duì)立事件,則P(A)+P(B)=1一般地,(4)如果在一次試驗(yàn)中某事件發(fā)生的概率是p,那么在n次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事恰好發(fā)生K次的概率: 95、 抽樣方法主要有:簡(jiǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025土地流轉(zhuǎn)合同范文
- 養(yǎng)豬產(chǎn)業(yè)鏈一體化2025年度合作協(xié)議模板3篇
- 2025城市綜合體物業(yè)租賃合同
- 2025服務(wù)合同香港及境外股市投資咨詢服務(wù)協(xié)議
- 2025年度農(nóng)村房屋產(chǎn)權(quán)轉(zhuǎn)讓及配套設(shè)施移交合同2篇
- 二零二五年度企業(yè)培訓(xùn)與發(fā)展公司管理服務(wù)協(xié)議3篇
- 二零二五年度農(nóng)副產(chǎn)品電商平臺(tái)入駐合作協(xié)議3篇
- 2025年度智能化公廁建設(shè)與運(yùn)營(yíng)管理承包施工合同書(shū)模板3篇
- 二零二五農(nóng)村宅基地買(mǎi)賣與農(nóng)村土地整治與生態(tài)保護(hù)合同
- 二零二五年度農(nóng)民工工資支付委托及勞務(wù)合同管理協(xié)議
- 展廳展板安裝方案范本
- 觀賞魚(yú)產(chǎn)業(yè)實(shí)施方案
- 全國(guó)教育科學(xué)規(guī)劃課題申報(bào)書(shū):34.《高質(zhì)量數(shù)字教材建設(shè)研究》
- 有關(guān)新加坡公司治理的思考
- 大概念教學(xué)讀書(shū)分享
- 駕駛員資格申請(qǐng)表
- Module 6 Unit1 Can I have some sweets (說(shuō)課稿)外研版(三起)英語(yǔ)四年級(jí)上冊(cè)
- 主要負(fù)責(zé)人重大隱患帶隊(duì)檢查表
- 《建筑施工模板安全技術(shù)規(guī)范》(JGJ 162-2008)
- 菜品作業(yè)指導(dǎo)書(shū)-06
- 小學(xué)勞動(dòng)教育調(diào)查報(bào)告
評(píng)論
0/150
提交評(píng)論