




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、第五章第五章 彎曲應力彎曲應力 目錄 第五章第五章 彎曲應力彎曲應力 5-2 5-2 純彎曲時的正應力純彎曲時的正應力 5-3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 5-4 5-4 彎曲切應力彎曲切應力 5-6 5-6 提高彎曲強度的措施提高彎曲強度的措施 目錄 5-1 5-1 純彎曲純彎曲 回顧與比較回顧與比較 內(nèi)力內(nèi)力 N F A 應力應力 P I T FS M ? ? 目錄 5-1 5-1 純彎曲純彎曲 4 m m M m m m m M ? 為了消除可能存在的影響因素,為了消除可能存在的影響因素, 找到一種只存在找到一種只存在M的內(nèi)力情況進行分析,的內(nèi)力情況進行分析, 此時不存
2、在剪力,保證了分析的獨立性此時不存在剪力,保證了分析的獨立性 純彎曲純彎曲 梁段梁段CDCD上,只有彎矩,沒有剪力上,只有彎矩,沒有剪力純彎曲純彎曲 梁段梁段ACAC和和BDBD上,既有彎矩,又有剪力上,既有彎矩,又有剪力橫力彎曲橫力彎曲 5-1 5-1 純彎曲純彎曲 目錄 5-2 5-2 純彎曲時的正應力純彎曲時的正應力 一、變形幾何關系一、變形幾何關系 x aa bb m n n m m aa b b mn n 平面假設:平面假設: 橫截面變形后保持為平橫截面變形后保持為平 面,且仍然垂直于變形后的面,且仍然垂直于變形后的 梁軸線,只是繞截面內(nèi)某一梁軸線,只是繞截面內(nèi)某一 軸線偏轉(zhuǎn)了一個角
3、度。軸線偏轉(zhuǎn)了一個角度。 凹入凹入一側(cè)纖維一側(cè)纖維縮短縮短 突出突出一側(cè)纖維一側(cè)纖維伸長伸長 中間一層纖維長度中間一層纖維長度 不變不變中性層中性層 中間層與橫截面的中間層與橫截面的 交線交線中性軸中性軸 5-2 5-2 純彎曲時的正應力純彎曲時的正應力 目錄 設想梁是由無數(shù)設想梁是由無數(shù) 層縱向纖維組成層縱向纖維組成 中性軸中性軸 8 dx y z x o dx d d y z y x o o b b y bb o o bb dy xbbd oo oo d e e yy - - d dd)( 胡克定理胡克定理eE二、物理關系二、物理關系 (b) y E 9 y z x O M z y FN
4、My dA dA dA z y AA AFdd N N F y M z M AA y AzMdd AA z AyMdd 0 0 M N dF y Md z Md y E 10 z IE M 1 MA y yEM A z d MI E z MAy E A d 2 正應力公式正應力公式 變形幾何關系變形幾何關系 物理關系物理關系 e y eE y E 靜力學關系靜力學關系 Z 1M EI Z I My 為曲率半徑,為曲率半徑, 為梁彎曲變形后的曲率;此為梁彎曲變形后的曲率;此 公式為求彎曲變形關鍵公式公式為求彎曲變形關鍵公式 1 11 例5-2 求矩形截面對其對稱軸的慣性矩 解:取yoz坐標系。取
5、微面積dA=bdy,則: ; 12 3 2/ 2/ 22 bh bdyydAyI h hA z - 例5-3 圓形截面對其形心軸的慣性矩。 解:取yoz坐標系。取微面積dA=2zdy,則: ; 644 2 44 2222 DR dyyRydAyI R RA z - - y 正應力分布正應力分布 Z I My Z max max I My max Z M W Z max Z I W y 5-2 5-2 純彎曲時的正應力純彎曲時的正應力 目錄 M M 與中性軸距離相等的點,與中性軸距離相等的點, 正應力相等;正應力相等; 正應力大小與其到中性正應力大小與其到中性 軸距離成正比;軸距離成正比; 中性
6、軸上中性軸上,正應力等于零正應力等于零 min Z M W - 常見截面的常見截面的 IZ 和和 WZ Z 圓截面圓截面矩形截面矩形截面空心圓截面空心圓截面空心矩形截面空心矩形截面 A dAyI 2 Z Z max y z I W 64 4 Z d I 3 32 z d W )1 ( 64 4 4 Z - D I 3 4 (1) 32 z D W - 12 3 Z bh I 2 6 z bh W 1212 3 3 00 Z bhhb I- 33 00 0 ()/(/2) 1212 z b hbh Wh- 5-2 5-2 純彎曲時的正應力純彎曲時的正應力 目錄 5-3 5-3 橫力彎曲時的正應力
7、橫力彎曲時的正應力 目錄 彈性力學精確分析表明,彈性力學精確分析表明, 當跨度當跨度 l 與橫截面高度與橫截面高度 h 之之 比比 l / h 5 (細長梁)時,(細長梁)時, 純彎曲正應力公式對于橫力純彎曲正應力公式對于橫力 彎曲近似成立。材料力學不彎曲近似成立。材料力學不 加說明一般默認為細長梁。加說明一般默認為細長梁。 橫力彎曲橫力彎曲 橫力彎曲正應力公式橫力彎曲正應力公式 Z I My maxmaxmax max ZZ MyM IW 橫力彎曲最大正應力橫力彎曲最大正應力 目錄 5-3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 細長梁的細長梁的純彎曲純彎曲或或橫力彎曲橫力彎曲 橫截面
8、慣性積橫截面慣性積 I IYZ YZ =0 =0 彈性變形階段彈性變形階段 公式適用范圍公式適用范圍 彎曲正應力強度條件彎曲正應力強度條件 Z W max maxmax max z MyM I 1.1.等截面梁彎矩最大的截面上等截面梁彎矩最大的截面上 2.2.離中性軸最遠處離中性軸最遠處 4.4.脆性材料脆性材料抗拉和抗壓性能不同,兩方面都要考慮抗拉和抗壓性能不同,兩方面都要考慮 tt max, cc max, 3.3.變截面梁要綜合考慮變截面梁要綜合考慮 與與M z I 目錄 5-3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 BA l = 3m q=60kN/m x C 1m M x m
9、67.5kN8/ 2 ql 30 z y 180 120 K 1.1.C 截面上截面上K點正應力點正應力 2.2.C 截面上截面上最大最大正應力正應力 3.3.全梁全梁上上最大最大正應力正應力 4.4.已知已知E=200GPa, C 截面的曲率半徑截面的曲率半徑 - FS x 90kN 90kN mkN605 . 0160190 C -M 1. 求支反力求支反力 kN90 Ay FkN90 By F 45 33 Z m10832. 5 12 18. 012. 0 12 - bh I MPa7 .61Pa107 .61 10832. 5 10)30 2 180 (1060 6 5 33 Z KC
10、 K - - - I yM (壓應力)(壓應力) 解:解: 例題5-1 目錄 5-3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 BA l = 3m q=60kN/m x C 1m M x m67.5kN8/ 2 ql 30 z y 180 120 K - FS x 90kN 90kN 2.2.C C 截面最大正應力截面最大正應力 C C 截面彎矩截面彎矩 mkN60 C M C C 截面慣性矩截面慣性矩 45 Z m10832. 5 - I MPa55.92Pa1055.92 10832. 5 10 2 180 1060 6 5 33 Z max max - - I yMC C 目錄 5-
11、3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 BA l = 3m q=60kN/m x C 1m M x m67.5kN8/ 2 ql 30 z y 180 120 K - FS x 90kN 90kN 3. 全梁最大正應力全梁最大正應力 最大彎矩最大彎矩 mkN5 .67 max M 截面慣性矩截面慣性矩 45 m10832. 5 - z I MPa17.104Pa1017.104 10832. 5 10 2 180 105 .67 6 5 33 Z maxmax max - - I yM 目錄 5-3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 BA l = 3m q=60kN/m
12、x C 1m M x m67.5kN8/ 2 ql 30 z y 180 120 K - FS x 90kN 90kN 4. C 截面曲率半徑截面曲率半徑 C 截面彎矩截面彎矩 mkN60 C M C 截面慣性矩截面慣性矩 45 Z m10832. 5 - I m4 .194 1060 10832. 510200 3 59 C Z C - M EI EI M 1 目錄 5-3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 21 完 分析分析 (1 1)確定危險截面)確定危險截面 (3 3)計算)計算 max M (4 4)計算)計算 ,選擇工,選擇工 字鋼型號字鋼型號 z W 某車間欲安裝簡易
13、吊車,大梁選用工字鋼。已知電機自某車間欲安裝簡易吊車,大梁選用工字鋼。已知電機自 重重材料的許用應力材料的許用應力 MPa,140 kN,7 . 6 1 F ,kN50 2 F起重量起重量跨度跨度m,5 . 9l 試選擇工字鋼的型號。試選擇工字鋼的型號。 z W M max max (2 2) 例題5-3 目錄 5-3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 (4 4)選擇工字鋼型號)選擇工字鋼型號 (5 5)討論)討論 (3 3)根據(jù))根據(jù) z W M max max 計算計算 336 6 3 max cm962m10962 10140 4 5 . 910)507 . 6( - M W
14、z (1 1)計算簡圖)計算簡圖 (2 2)繪彎矩圖)繪彎矩圖 解:解: 36c36c工字鋼工字鋼 3 cm962 z W kg/m6 .67q 目錄 5-3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 作彎矩圖,尋找需要校核的截面作彎矩圖,尋找需要校核的截面 cctt max,max, ,要同時滿足要同時滿足 分析:分析: 非對稱截面,要尋找中性軸位置非對稱截面,要尋找中性軸位置 T T型截面鑄鐵梁,截面尺寸如圖示。型截面鑄鐵梁,截面尺寸如圖示。 試校核梁的強度。試校核梁的強度。 MPa,60,MPa30 ct 例題5-4 目錄 5-3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 mm5
15、2 c y 46 m1064. 7 - z I z1 y z 52 目錄 5-3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 (4 4)B B截面校核截面校核 t t - - MPa2 .27Pa102 .27 1064. 7 1052104 6 6 33 max, c c - - MPa1 .46Pa101 .46 1064. 7 1088104 6 6 33 max, (3 3)作彎矩圖)作彎矩圖 目錄 kN.m5 .2 kN.m4 5-3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 (5 5)C C截面要不要校核?截面要不要校核? t t - - MPa8 .28Pa108 .28
16、1064. 7 1088105 . 2 6 6 33 max, (4 4)B B截面校核截面校核 (3 3)作彎矩圖)作彎矩圖 tt MPa2 .27 max, cc MPa1 .46 max, 目錄 kN.m5 .2 kN.m4 5-3 5-3 橫力彎曲時的正應力橫力彎曲時的正應力 梁滿足強度要求梁滿足強度要求 28 5-4 5-4 彎曲切應力彎曲切應力 目錄 x dx x y P m q(x) A B m n m1 n1 分幾種截面形狀討論彎曲切應力分幾種截面形狀討論彎曲切應力 一、矩形截面梁一、矩形截面梁 Fs b h y m n m1 n1 O p1 q1 p dx x y z 29
17、( /) s F1 1、橫截面上各點的切應力方向平行于剪力、橫截面上各點的切應力方向平行于剪力 2 2、切應力、切應力沿截面寬度均勻分布沿截面寬度均勻分布 關于切應力的分布作兩點假設:關于切應力的分布作兩點假設: 30 知識點補充知識點補充 在相互垂直在相互垂直 的兩個平面上,的兩個平面上, 切應力必然成對切應力必然成對 存在,且數(shù)值相存在,且數(shù)值相 等;兩者都垂直等;兩者都垂直 于兩個平面的交于兩個平面的交 線,方向則共同線,方向則共同 指向或共同背離指向或共同背離 這一交線。這一交線。 切應力互等定理:切應力互等定理: 31 32 m n n m x y z o b dx m m h n
18、A B B1 A1 mn x z y y m q(x) F1F2 m m n n xdx y A B A1B1 FN2 FN1 dx n n m m M M+dM y AB 討論部分梁的平衡討論部分梁的平衡 A * 33 m n n m x y z o y A B A1 B1 b dx m m h n = 距中性距中性 軸距離為軸距離為y的橫線上的彎曲切應力的橫線上的彎曲切應力 A B B1 A1 mn x z y y m FN1 FN2 dFS 34 A B B1 A1 mn x z y y m FN1 FN2 dFS * d 11N A AF Ay I M A I My A z A z d
19、d *1 1 * z z S I M * 22N d d *z z A S I MM AF * d 1 * A z AyS Ad 1 y1 A * 35 * 1Nz z S I M F * 2N d z z S I MM F xbFdd S 0 x F 0d S1N2N - - -FFF b I S x M z z * d d S d d F x M b I SF z z S * A* A B B1 A1 mn x z y y m FN2 FN1 dFS Ad 1 36 y A* z b bI SF z z S * z I Sz * Sz * * d 1 * A z AyS 37 yd 1 y
20、1 n B m A x y z Oy A1B1 m1 * d 1 * A z AyS 1 2/ 1 dyby h y ) 4 ( 2 2 2 S * S y h I F bI SF zz z - - z bh F bh h F I h F z S 3 2 S 2 S max 2 3 12 8 8 A F 2 3 S max ) 4 ( 2 2 2 y hb - 切應變:根據(jù)剪切胡克定律切應變:根據(jù)剪切胡克定律=G 2 2 () 24 s z Fh y GI G - 5-4 5-4 彎曲切應力彎曲切應力 5-4 5-4 彎曲切應力彎曲切應力 二、圓形截面梁二、圓形截面梁 Fs max 2 4 3
21、 s F R bI SF z z S * 5-4 5-4 彎曲切應力彎曲切應力 目錄 00 s F b h Fs 三、工字型截面梁三、工字型截面梁 B b0 h h0 z y y bI SF z z S * 41 完 實心截面梁正應力與切應力比較實心截面梁正應力與切應力比較 對于直徑為對于直徑為 d d 的圓截面的圓截面 max max = 6 ( l / d ) 5-4 5-4 彎曲切應力彎曲切應力 目錄 (l 為梁的跨度)為梁的跨度) 實心截面梁正應力與切應力比較實心截面梁正應力與切應力比較 對于寬為對于寬為b、高為高為h 的矩形截面的矩形截面 max max = 4 ( l / h )
22、5-4 5-4 彎曲切應力彎曲切應力 目錄 (l 為梁的跨度)為梁的跨度) l 梁的跨度較短梁的跨度較短(l / h 5); l 在支座附近作用較大載荷(載荷靠近支座);在支座附近作用較大載荷(載荷靠近支座); l 鉚接或焊接的工字形或箱形等截面梁(腹板、焊縫、鉚接或焊接的工字形或箱形等截面梁(腹板、焊縫、 膠合面或鉚釘?shù)龋┠z合面或鉚釘?shù)龋?q B A CDE l PP a 5-4 5-4 彎曲切應力彎曲切應力 有些情況必須考慮彎曲切應力有些情況必須考慮彎曲切應力 懸臂梁由三塊木板粘接懸臂梁由三塊木板粘接 而成??缍葹槎伞?缍葹? 1m m。膠合面膠合面 的許可切應力為的許可切應力為0.34
23、0.34MPaMPa, 木材的木材的= 10 = 10 MPaMPa, =1MPa=1MPa,求許可載荷。求許可載荷。 2 1max max 6 bh lF W M z 1.1.畫梁的剪力圖和彎矩圖畫梁的剪力圖和彎矩圖 2.2.按正應力強度條件計算許可載荷按正應力強度條件計算許可載荷 S F F M - Fl 3.75kNN3750 6 1015010010 6 9272 1 - - l bh F bhFAFS2/32/3 2max 3.3.按切應力強度條件計算許可載荷按切應力強度條件計算許可載荷 kN01N100003/101501001023/2 66 2 - - bhF F l 100 50 50 50 z 解:解: 例題5-5 目錄 5-4 5-4 彎曲切應力彎曲切應力 g Z ZS bh F b bh h bF bI SF 3 4 12 3 3 3 2 3* g 4.4.按膠合面強度條件按膠合面強度條件 計算許可載荷計算許可載荷 3.825kNN3825 4 1034. 0101501003 4 3 66 3 - - g bh F 5.5.梁的許可載荷為梁的許可載荷為 3.75kNkN825. 3kN10kN75
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025公司租車合同協(xié)議范本
- 逾期賠償協(xié)議書
- 聘請教官協(xié)議書
- 空調(diào)促銷協(xié)議書
- 草原解除協(xié)議書
- 股權(quán)兌換協(xié)議書
- 聯(lián)合租賃協(xié)議書
- 股份明確協(xié)議書
- 籃球球員協(xié)議書
- 約定變更協(xié)議書
- 《公路橋涵施工技術規(guī)范》JTG-T3650-2020培訓
- 2024年天津市單位職工勞動合同(三篇)
- 2024秋期國家開放大學專科《液壓與氣壓傳動》一平臺在線形考(形考任務+實驗報告)試題及答案
- 膽石癥病人的護理
- 四川省成都市2024年小升初英語試卷(含答案)
- 建筑施工安全生產(chǎn)標準化指導圖冊
- 渠道襯砌施工方案(渠道預制混凝土塊)
- 2024年新課標高考政治真題試卷含答案
- 02S515排水檢查井圖集
- DL∕T 5344-2018 電力光纖通信工程驗收規(guī)范
- T-CCIIA 0004-2024 精細化工產(chǎn)品分類
評論
0/150
提交評論