141正弦函數(shù)、余弦函數(shù)的圖象_第1頁
141正弦函數(shù)、余弦函數(shù)的圖象_第2頁
141正弦函數(shù)、余弦函數(shù)的圖象_第3頁
141正弦函數(shù)、余弦函數(shù)的圖象_第4頁
141正弦函數(shù)、余弦函數(shù)的圖象_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、1.4.1正弦函數(shù)、余弦函數(shù)的圖象班級:_姓名:_設(shè)計人:_日期:_課前預(yù)習(xí) 預(yù)習(xí)案溫馨寄語正路并不一定就是一條平平坦坦的直路,難免有些曲折和崎嶇險阻,要繞一些彎,甚至難免誤入歧途。朱光潛學(xué)習(xí)目標(biāo) 1理解正弦函數(shù)、余弦函數(shù)的圖象.2會用“五點法”畫出正弦函數(shù)、余弦函數(shù)的圖象學(xué)習(xí)重點 正弦函數(shù)、余弦函數(shù)的圖象學(xué)習(xí)難點 1將單位圓中的正弦線通過平移轉(zhuǎn)化為正弦函數(shù)圖象上的點2正弦函數(shù)與余弦函數(shù)圖象間的關(guān)系自主學(xué)習(xí) 1正弦曲線、余弦曲線(1)正弦曲線:如圖所示:正弦函數(shù)的圖象叫做正弦曲線.(2)余弦曲線:將正弦曲線向 平移 個單位,得到余弦曲線.余弦函數(shù)的圖象叫做余弦曲線.2“五點法”作圖函數(shù)的圖象上

2、,起關(guān)鍵作用的五點是: .預(yù)習(xí)評價 1對于余弦函數(shù):y=cos x的圖象,下列說法錯誤的是a.向左、右無限延伸b.與:y=cos x的圖象形狀相同,只是位置不同c.與x軸有無數(shù)個交點d.關(guān)于原點對稱2方程2x= sin x的解的個數(shù)為a.1 b.2 c.3 d.無窮多3正弦曲線在(0,2內(nèi)最高點坐標(biāo)為 ,最低點坐標(biāo)為 .4在同一坐標(biāo)系中函數(shù)y=sin x,x(0,2與y=sin x, x(2,4的圖象形狀,位置 .(填“相同”或“不同”).5用五點作圖法作y=1-cos x, x(0,2的圖象時,其中第二個關(guān)鍵點的坐標(biāo)為 .知識拓展 探究案合作探究 1五點作圖法與正弦、余弦曲線正弦曲線y=si

3、n x,x0,2和余弦曲線y=cos x,x0,2如圖所示:觀察圖象,完成下列探究問題:(1)根據(jù)提示完成下列填空:正弦曲線:y=sin x,x0,2與x軸交點的坐標(biāo)分別是 , , ;余弦曲線:y=cos x,x0,2與x軸交點的坐標(biāo)分別是 , , ;余弦曲線:y=cos x,x0,2的最髙點與最低點坐標(biāo)分別是 , , ;(2)用五點作圖法作函數(shù)圖象的三個步驟是什么?2正弦曲線、余弦曲線之間存在什么關(guān)系?教師點撥 對五點作圖法的兩點說明(1)“五點法”是作圖常用的基本方法,在精確度要求不高的情況下,常釆用此法.(2)作圖時,函數(shù)自變量要用弧度制,自變量與函數(shù)值 均為實數(shù),因此在x軸、y軸上可以

4、統(tǒng)一單位,這樣作出的圖象正規(guī)便于應(yīng)用.交流展示“五點法”作正弦函數(shù)、余弦函數(shù)的圖像 用“五點法”作函數(shù)y=2sinx(x0,2)的簡圖.變式訓(xùn)練 利用“五點法”作出y=-1-cosx(0x2)的簡圖.交流展示利用正、余弦曲線解簡單的三角不等式 2在0,2上,滿足sinx22的x的取值范圍是a.0,4b.4,34c.4,2d.34,3函數(shù)f(x)=lg(cosx-12)+sinx的定義域是_.變式訓(xùn)練 2cosx0,x0,2的解集為a. (2,32)b. 2,32c. (2,2)d. (0,2)3函數(shù)y=2cos+2的定義域是_.交流展示三角函數(shù)圖像的綜合應(yīng)用 畫出正弦函數(shù)y=sinx(xr)的

5、簡圖,并根據(jù)圖象寫出:(1) y12時x的集合;(2) -12y32時x的集合.變式訓(xùn)練 若函數(shù)f(x)=sinx+2|sinx|,x0,2的圖象與直線y=k有且只有兩個不同的交點,求k的取值范圍.學(xué)習(xí)小結(jié) 1作形如y=a sin x+b(或y=acos x+b)x0,2的圖象的三個步驟2利用三角函數(shù)圖象解sin xa(或 cos x a)的三個步驟(1)作出直線:y=a,y=sin x(或y= cos x)的圖象.(2)確定sinx = a(或 cosx = a )的x值.(3)確定sinxa(或 cos xa)的解集.提醒:解三角不等式sin xa 一般先利用圖象求出x0,2范圍內(nèi)x的取值

6、范圍,然后根據(jù)終邊相同角的同一三角函數(shù)值相等,寫出原不等式的解集.3方程根(或個數(shù))的兩種判斷方法(1)代數(shù)法:直接求出方程的根,得到根的個數(shù).(2)幾何法:方程兩邊直接作差構(gòu)造一個函數(shù),作出函數(shù)的圖象,利用對應(yīng)函數(shù)的圖象,觀察與x軸的交點個數(shù),有幾個交點原方程就有幾個根.轉(zhuǎn)化為兩個函數(shù),分別作這兩個函數(shù)的圖象,觀察交點個數(shù),有幾個交點原方程就有幾個根.當(dāng)堂檢測 1函數(shù)y=2+sinx,x0,2的圖象與直線y=2的交點的個數(shù)是a.3b.2c.1d.02函數(shù)y=xsinx,y=xcosx,y=x|cosx|,y=x2x的圖象(部分)如下,但順序被打亂,則按照從左到右、從上到下的順序?qū)D象對應(yīng)的函

7、數(shù)序號排列正確的一組是a.b.c.d.知識拓展 1函數(shù)y=sinxx,x(,0)(0,)的圖象是a.b. c.d.2函數(shù)f(x)=x-cos x在0,+)內(nèi)a.沒有零點b.有且僅有一個零點c.有且僅有兩個零點d.有無窮多個零點1.4.1正弦函數(shù)、余弦函數(shù)的圖象詳細(xì)答案課前預(yù)習(xí) 預(yù)習(xí)案【自主學(xué)習(xí)】1(2)左 2(0,0),(,1),(,0),(,-1),(2,0)【預(yù)習(xí)評價】1d2d3(,1) (,-1)4相同 不同5(,1)知識拓展 探究案【合作探究】1(1)(0,0) (,0) (2,0) (,0) (,0) (0,1) (2,1) (,-1)(22正弦曲線、余弦曲線的形狀是一樣的,只是在坐

8、標(biāo)系中的位置不同,將ysin x的圖象向左平移個單位便可得到y(tǒng)cos x的圖象,同理將ycos x的圖象向右平移個單位便可得到y(tǒng)=sin x的圖象.【交流展示“五點法”作正弦函數(shù)、余弦函數(shù)的圖像】(1)列表:00200(2)描點作圖,如下:【變式訓(xùn)練】列表:010010描點作圖,如圖所示.【交流展示利用正、余弦曲線解簡單的三角不等式】2b3【變式訓(xùn)練】2a【解析】ycos x,x0,2的圖象如圖所示,由圖可知cos x0,x0,2的解集為(2,32).3,【解析】由,得,結(jié)合圖像知,.【交流展示三角函數(shù)圖像的綜合應(yīng)用】解:用“五點法”作出ysinx的簡圖.(1)過(0,12)點作x軸的平行線,

9、從圖象可看出它在區(qū)間0,2上與正弦曲線交于(6,12),(56,12)兩點,在0,2區(qū)間內(nèi),y12時x的集合為x|6x56,當(dāng)xr時,若y12,則x的集合為x|6+2kx56+2k,kz.(2)過(0,-12)、(0,23)兩點分別作x軸的平行線,從圖象可看出它們分別與正弦曲線交于點(76+2k,-12)(kz),(116+2k,-12)(kz)和點(3+2k,23)(kz),(23+2k,23)(kz),那么曲線上夾在對應(yīng)兩點之間的點的橫坐標(biāo)的集合即為所求,故當(dāng)-12y23時x的集合為x|-6+2kx3+2k,kzx|23+2kx76+2k,kz.【變式訓(xùn)練】作出函數(shù)的圖像如圖:由圖可知當(dāng)時函數(shù),的圖像與直線有且只有兩個不同的交點.【當(dāng)堂檢測】1a2c【知識拓展】1a【解析】由于函數(shù)y=sinxx,x(,0)(0,)11是偶函數(shù),故它的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論