§3.3.1二元一次不等式(組)與平面區(qū)域(1)_第1頁
§3.3.1二元一次不等式(組)與平面區(qū)域(1)_第2頁
§3.3.1二元一次不等式(組)與平面區(qū)域(1)_第3頁
§3.3.1二元一次不等式(組)與平面區(qū)域(1)_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、 課題: 3.3.1二元一次不等式(組)與平面區(qū)域第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1知識與技能:了解二元一次不等式的幾何意義,會用二元一次不等式組表示平面區(qū)域;2過程與方法:經(jīng)歷從實(shí)際情境中抽象出二元一次不等式組的過程,提高數(shù)學(xué)建模的能力;3情態(tài)與價(jià)值:通過本節(jié)課的學(xué)習(xí),體會數(shù)學(xué)來源與生活,提高數(shù)學(xué)學(xué)習(xí)興趣?!窘虒W(xué)重點(diǎn)】用二元一次不等式(組)表示平面區(qū)域;【教學(xué)難點(diǎn)】【教學(xué)過程】1.課題導(dǎo)入1從實(shí)際問題中抽象出二元一次不等式(組)的數(shù)學(xué)模型課本第91頁的“銀行信貸資金分配問題”教師引導(dǎo)學(xué)生思考、探究,讓學(xué)生經(jīng)歷建立線性規(guī)劃模型的過程。在獲得探究體驗(yàn)的基礎(chǔ)上,通過交流形成共識:2.講授新課1

2、建立二元一次不等式模型把實(shí)際問題 數(shù)學(xué)問題:設(shè)用于企業(yè)貸款的資金為x元,用于個(gè)人貸款的資金為y元。(把文字語言 符號語言)(資金總數(shù)為25 000 000元) (1)(預(yù)計(jì)企業(yè)貸款創(chuàng)收12%,個(gè)人貸款創(chuàng)收10%,共創(chuàng)收30 000元以上) 即 (2)(用于企業(yè)和個(gè)人貸款的資金數(shù)額都不能是負(fù)值) (3)將(1)(2)(3)合在一起,得到分配資金應(yīng)滿足的條件:2二元一次不等式和二元一次不等式組的定義(1)二元一次不等式:含有兩個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1的不等式叫做二元一次不等式。(2)二元一次不等式組:有幾個(gè)二元一次不等式組成的不等式組稱為二元一次不等式組。(3)二元一次不等式(組)的解集

3、:滿足二元一次不等式(組)的x和y的取值構(gòu)成有序?qū)崝?shù)對(x,y),所有這樣的有序?qū)崝?shù)對(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。(4)二元一次不等式(組)的解集與平面直角坐標(biāo)系內(nèi)的點(diǎn)之間的關(guān)系:二元一次不等式(組)的解集是有序?qū)崝?shù)對,而點(diǎn)的坐標(biāo)也是有序?qū)崝?shù)對,因此,有序?qū)崝?shù)對就可以看成是平面內(nèi)點(diǎn)的坐標(biāo),進(jìn)而,二元一次不等式(組)的解集就可以看成是直角坐標(biāo)系內(nèi)的點(diǎn)構(gòu)成的集合。3.探究二元一次不等式(組)的解集表示的圖形(1)回憶、思考回憶:初中一元一次不等式(組)的解集所表示的圖形數(shù)軸上的區(qū)間思考:在直角坐標(biāo)系內(nèi),二元一次不等式(組)的解集表示什么圖形?(2)探究從特殊到一般:先研究具

4、體的二元一次不等式x-y6的解集所表示的圖形。如圖:在平面直角坐標(biāo)系內(nèi),x-y=6表示一條直線。平面內(nèi)所有的點(diǎn)被直線分成三類:第一類:在直線x-y=6上的點(diǎn);第二類:在直線x-y=6左上方的區(qū)域內(nèi)的點(diǎn);第三類:在直線x-y=6右下方的區(qū)域內(nèi)的點(diǎn)。設(shè)點(diǎn)是直線x-y=6上的點(diǎn),選取點(diǎn),使它的坐標(biāo)滿足不等式x-y6,請同學(xué)們完成課本第93頁的表格,橫坐標(biāo)x-3-2-10123點(diǎn)p的縱坐標(biāo)點(diǎn)a的縱坐標(biāo)并思考:當(dāng)點(diǎn)a與點(diǎn)p有相同的橫坐標(biāo)時(shí),它們的縱坐標(biāo)有什么關(guān)系?根據(jù)此說說,直線x-y=6左上方的坐標(biāo)與不等式x-y6有什么關(guān)系?直線x-y=6右下方點(diǎn)的坐標(biāo)呢?學(xué)生思考、討論、交流,達(dá)成共識:在平面直角坐

5、標(biāo)系中,以二元一次不等式x-y6的解為坐標(biāo)的點(diǎn)都在直線x-y=6的左上方;反過來,直線x-y=6左上方的點(diǎn)的坐標(biāo)都滿足不等式x-y6。因此,在平面直角坐標(biāo)系中,不等式x-y6表示直線x-y=6右下方的區(qū)域;如圖。直線叫做這兩個(gè)區(qū)域的邊界由特殊例子推廣到一般情況:(3)結(jié)論:二元一次不等式ax+by+c0在平面直角坐標(biāo)系中表示直線ax+by+c=0某一側(cè)所有點(diǎn)組成的平面區(qū)域.(虛線表示區(qū)域不包括邊界直線)4二元一次不等式表示哪個(gè)平面區(qū)域的判斷方法由于對在直線ax+by+c=0同一側(cè)的所有點(diǎn)(),把它的坐標(biāo)()代入ax+by+c,所得到實(shí)數(shù)的符號都相同,所以只需在此直線的某一側(cè)取一特殊點(diǎn)(x0,y

6、0),從ax0+by0+c的正負(fù)即可判斷ax+by+c0表示直線哪一側(cè)的平面區(qū)域.(特殊地,當(dāng)c0時(shí),常把原點(diǎn)作為此特殊點(diǎn))【應(yīng)用舉例】例1 畫出不等式表示的平面區(qū)域。解:先畫直線(畫成虛線).取原點(diǎn)(0,0),代入+4y-4,0+40-4=-40,原點(diǎn)在表示的平面區(qū)域內(nèi),不等式表示的區(qū)域如圖:歸納:畫二元一次不等式表示的平面區(qū)域常采用“直線定界,特殊點(diǎn)定域”的方法。特殊地,當(dāng)時(shí),常把原點(diǎn)作為此特殊點(diǎn)。變式1、畫出不等式所表示的平面區(qū)域。變式2、畫出不等式所表示的平面區(qū)域。例2 用平面區(qū)域表示.不等式組的解集。分析:不等式組表示的平面區(qū)域是各個(gè)不等式所表示的平面點(diǎn)集的交集,因而是各個(gè)不等式所表示的平面區(qū)域的公共部分。解:不等式表示直線右下方的區(qū)域,表示直線右上方的區(qū)域,取兩區(qū)域重疊的部分,如圖的陰影部分就表示原不等式組的解集。歸納:不等式組表示的平面區(qū)域是各個(gè)不等式所表示的平面點(diǎn)集的交集,因而是各個(gè)不等式所表示的平面區(qū)域的公共部分。變式1、畫出不等式表示的平面區(qū)域。變式2、由直線,和圍成的三角形區(qū)域(包括邊界)用不等式可表示為 。3.隨堂練習(xí)1、課本第97頁的練習(xí)1、2、34.課時(shí)小結(jié)1二元一次不等式表示的平面區(qū)域2二元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論