版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、 一道高考測試題折射出的點(diǎn)到面的距離及二面角的多種解法 摘要:本文就一道高考測試題談?wù)摿艘活}多解的方法。從而使我們理解到以推動素質(zhì)教育為宗旨的教育改革,以適合每年的高考,這就要求我們不但應(yīng)著眼于對知識的深化與方法的拓展,而且要注重思想的探索過程的辨析及水平的提升。關(guān)鍵詞: 點(diǎn)到面的距離 向量在幾何問題上求點(diǎn)到面的距離及二面角問題不但是重點(diǎn)也是難點(diǎn),更是多年來高考考查的熱點(diǎn)。尤其在綜合題里面,思維不同所用的方法就不同。這就要求教師在平時的教學(xué)與復(fù)習(xí)時,除了滲透基本方法之外,還應(yīng)該引導(dǎo)學(xué)生去探究點(diǎn)到面的距離及二面角的其他求法。下面通過一道高考測試題我們談?wù)勱P(guān)于點(diǎn)到面的距離及二面角的幾種求法。 題目
2、:如果,直三棱柱a的底面是等腰直角三角形, =, ,d是線段的中點(diǎn).1 證明: 平面; 2 求點(diǎn)到平面的距離; <3> 求二面角的大小. 這里只研究問題2和3.由1知平面;一. 找出距離直接求:解法1:如圖1 過作,面就是點(diǎn)到面的距離.下面求: =·=·又=,=【評注】:這里通過輔助圖由一組線面垂直找出另一組線面垂直,從而找出點(diǎn)到面的距離,再利用等面積求距離.二.利用等體積法求距離:解法2:如圖1 =·=·=【評注】:利用同一四棱柱頂點(diǎn)不同,底面不同但體積相同的方式來求點(diǎn)到面的距離.三.利用向量法(法向量)求距離: 解法3: 如圖2 取為原點(diǎn)
3、,分別為x,y,z軸,建立直角坐標(biāo)系,則(0,0,0), (1,0,0),(0,1,0),(1,0,)設(shè)面的法向量為= ()=(0,1,0), =(1,0, ), =(,0,) 即法向量 =(,0,1)又=, 又=(-1,1,0)=【評注】:如果建立空間直角坐標(biāo)系,利用向量坐標(biāo)及過平面的向量與該平面的法向量的關(guān)系把距離求解問題簡單化. 一個數(shù)學(xué)問題,往往因思考角度不同而有多種解法,但不論哪種解法都源于課本上的基本知識點(diǎn),是把基本知識融會貫通,綜合使用,在此立體幾何題中,通過2的方法我們利用轉(zhuǎn)化的思想,同樣能找出對應(yīng)的3的幾種解法.一.作出二面角利用定義法求二面角:解法1: 由2中找距離所對應(yīng)的
4、方法,不妨利用2作出-的二面角的平面角. 如圖1 過作, 連接ef, 即為所求的二面角的平面角=1, 設(shè)二面角的平面角為=, 由此得: =解法2. 如圖2 過作,連接 為的中點(diǎn), 即為所求的二面角=,=設(shè)二面角的平面角為=【評注】:這里通過補(bǔ)形找出二面角的平面角使之在易求解的三角形中從而回歸定義求解.二.利用面積射影定理求二面角: 由方法一中所作輔助線的不同在此方法中我們能夠得到與之對應(yīng)的轉(zhuǎn)化.解法3: 如圖1,當(dāng)面時,連接,e為在面上的射影.故在面上的射影為設(shè)所求二面角的平面角為則易求: =解法4: 如圖2, 當(dāng)時, 連接,為在面上的射影.故在面上的射影為設(shè)所求二面角的平面角為則易求 =【評
5、注】:如果能求得二面角一個面內(nèi)的幾何圖形的面積及它在另一個面內(nèi)的射影面積利用面積射影定理,進(jìn)而化難為易.三. 利用向量(法向量)求二面角: 設(shè)兩平面與間的二面角用來表示,而兩平面的法向量與的夾角記為則有=或 -通過2中三的解法,如圖2, 已知=同理,設(shè)面的法向量 , 設(shè)與的夾角為,而二面角的平面角為則, 由此題得=【評注】:向量是一種重要的運(yùn)算工具,高考中常出現(xiàn)它和高中數(shù)學(xué)中其它知識點(diǎn)交匯的試題,這里利用向量來求二面角問題,數(shù)形結(jié)合,相得益彰.另外向量除了能夠處理二面角問題之外,還能夠解決立體幾何中的距離和其他角問題.通過對上述實(shí)例的分析與說明,我認(rèn)為,教師在講解習(xí)題時只給出準(zhǔn)確答案是遠(yuǎn)遠(yuǎn)不夠的,它還需要勤積累,多思考,善總結(jié),只有這樣才能在課堂上保持高度的靈活性,多變性,同時使學(xué)生的知識網(wǎng)絡(luò)得以持續(xù)優(yōu)化與完善,使學(xué)生的思維水平得到持續(xù)的發(fā)展與提升,以期達(dá)到舉一反三,開拓思路,融會貫通之目的.參考文獻(xiàn):1 費(fèi)新慧 中學(xué)數(shù)學(xué)教育 中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度房屋抵押貸款代理協(xié)議書范本3篇
- 二零二五版生態(tài)修復(fù)工程合同協(xié)議3篇
- 二零二五年度海外務(wù)工人員權(quán)益保障合同范本4篇
- 二零二五年度綠色建筑混凝土材料供應(yīng)及承包服務(wù)合同4篇
- 2024音樂制作方與影視制作方合作合同
- 2025年度地下管線改造打井工程承包施工合同范本4篇
- 2025版車輛抵押借款合同(含貸款利率保密條款)4篇
- 二零二五年度環(huán)境應(yīng)急預(yù)案編制與演練服務(wù)合同標(biāo)準(zhǔn)3篇
- 2025年度城市軌道交通線路運(yùn)營管理合同4篇
- 二零二五年度攤位租賃合同解除通知合同:攤位租賃合同解除通知協(xié)議4篇
- GB/T 37238-2018篡改(污損)文件鑒定技術(shù)規(guī)范
- 普通高中地理課程標(biāo)準(zhǔn)簡介(湘教版)
- 河道治理工程監(jiān)理通知單、回復(fù)單范本
- 超分子化學(xué)簡介課件
- 高二下學(xué)期英語閱讀提升練習(xí)(一)
- 易制爆化學(xué)品合法用途說明
- 【PPT】壓力性損傷預(yù)防敷料選擇和剪裁技巧
- 大氣喜慶迎新元旦晚會PPT背景
- DB13(J)∕T 242-2019 鋼絲網(wǎng)架復(fù)合保溫板應(yīng)用技術(shù)規(guī)程
- 心電圖中的pan-tompkins算法介紹
- 羊絨性能對織物起球的影響
評論
0/150
提交評論